The impact of variable illumination on vegetation indices and evaluation of illumination correction methods on chlorophyll content estimation using UAV imagery

Author:

Wang Yuxiang,Yang Zengling,Kootstra Gert,Khan Haris Ahmad

Abstract

Abstract Background The advancements in unmanned aerial vehicle (UAV) technology have recently emerged as an effective, cost-efficient, and versatile solution for monitoring crop growth with high spatial and temporal precision. This monitoring is usually achieved through the computation of vegetation indices (VIs) from agricultural lands. The VIs are based on the incoming radiance to the camera, which is affected when there is a change in the scene illumination. Such a change will cause a change in the VIs and subsequent measures, e.g., the VI-based chlorophyll-content estimation. In an ideal situation, the results from VIs should be free from the impact of scene illumination and should reflect the true state of the crop’s condition. In this paper, we evaluate the performance of various VIs computed on images taken under sunny, overcast and partially cloudy days. To improve the invariance to the scene illumination, we furthermore evaluated the use of the empirical line method (ELM), which calibrates the drone images using reference panels, and the multi-scale Retinex algorithm, which performs an online calibration based on color constancy. For the assessment, we used the VIs to predict leaf chlorophyll content, which we then compared to field measurements. Results The results show that the ELM worked well when the imaging conditions during the flight were stable but its performance degraded under variable illumination on a partially cloudy day. For leaf chlorophyll content estimation, The $$r^2$$ r 2 of the multivariant linear model built by VIs were 0.6 and 0.56 for sunny and overcast illumination conditions, respectively. The performance of the ELM-corrected model maintained stability and increased repeatability compared to non-corrected data. The Retinex algorithm effectively dealt with the variable illumination, outperforming the other methods in the estimation of chlorophyll content. The $$r^2$$ r 2 of the multivariable linear model based on illumination-corrected consistent VIs was 0.61 under the variable illumination condition. Conclusions Our work indicated the significance of illumination correction in improving the performance of VIs and VI-based estimation of chlorophyll content, particularly in the presence of fluctuating illumination conditions.

Funder

China Scholarship Council

Agricultural Green Development

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3