Abstract
Abstract
Background
The technology of cotton defoliation is essential for mechanical cotton harvesting. Agricultural unmanned aerial vehicle (UAV) spraying has the advantages of low cost, high efficiency and no mechanical damage to cotton and has been favored and widely used by cotton planters in China. However, there are also some problems of low cotton defoliation rates and high impurity rates caused by unclear spraying amounts of cotton defoliants. The chemical rate recommendation and application should be based upon crop canopy volume rather than on land area. Plant height and leaf area index (LAI) is directly connected to plant canopy structure. Accurate dynamic monitoring of plant height and LAI provides important information for evaluating cotton growth and production. The traditional method to obtain plant height and LAI was s a time-consuming and labor-intensive task. It is very difficult and unrealistic to use the traditional measurement method to make the temporal and spatial variation map of plant height and LAI of large cotton fields. With the application of UAV in agriculture, remote sensing by UAV is currently regarded as an effective technology for monitoring and estimating plant height and LAI.
Results
In this paper, we used UAV RGB photos to build dense point clouds to estimate cotton plant height and LAI following cotton defoliant spraying. The results indicate that the proposed method was able to dynamically monitor the changes in the LAI of cotton at different times. At 3 days after defoliant spraying, the correlation between the plant height estimated based on the constructed dense point cloud and the measured plant height was strong, with $$R^2$$
R
2
and RMSE values of 0.962 and 0.913, respectively. At 10 days after defoliant spraying, the correlation became weaker over time, with $$R^2$$
R
2
and RMSE values of 0.018 and 0.027, respectively. Comparing the actual manually measured LAI with the estimated LAI based on the dense point cloud, the $$R^2$$
R
2
and RMSE were 0.872 and 0.814 and 0.132 and 0.173 at 3 and 10 days after defoliant spraying, respectively.
Conclusions
Dense point cloud construction based on UAV remote sensing is a potential alternative to plant height and LAI estimation. The accuracy of LAI estimation can be improved by considering both plant height and planting density.
Funder
Characteristic Innovation Project of Guangdong Province
National Natural Science Foundation of China
Natural Science Foundation of Guangdong Province
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference55 articles.
1. Khan A, Najeeb U, Wang L, Tan DKY, Yang G, Munsif F, Ali S, Hafeez A. Planting density and sowing date strongly influence growth and lint yield of cotton crops. Field Crops Res. 2017;209:129–35.
2. Feng L, Dai J, Tian L, Zhang H, Li W, Dong H. Review of the technology for high-yielding and efficient cotton cultivation in the northwest inland cotton-growing region of china. Field Crops Res. 2017;208:18–26.
3. Burmester C, Patterson M, Monks C. Cotton defoliants and boll openers safeguard quality, improve harvest efficiency. Highlights Agric Res. 1995;42(3):10–1.
4. Yi L, Lan Y, Kong H, Kong F, Huang H, Han X. Exploring the potential of UAV imagery for variable rate spraying in cotton defoliation application. IJPAA. 2019;209(1):42–5.
5. Ma X, Wang Z, Jiang W, Ren X, Hu H, Ma Y, Ma Y. Analysis of current status and application prospects of unmanned aerial vehicle plant protection technology in cotton field in china. China Cotton. 2016;43(6):7–11.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献