Method for accurate multi-growth-stage estimation of fractional vegetation cover using unmanned aerial vehicle remote sensing

Author:

Yue Jibo,Guo WeiORCID,Yang Guijun,Zhou Chengquan,Feng Haikuan,Qiao Hongbo

Abstract

Abstract Background Fractional vegetation cover (FVC) is an important parameter for evaluating crop-growth status. Optical remote-sensing techniques combined with the pixel dichotomy model (PDM) are widely used to estimate cropland FVC with medium to high spatial resolution on the ground. However, PDM-based FVC estimation is limited by effects stemming from the variation of crop canopy chlorophyll content (CCC). To overcome this difficulty, we propose herein a “fan-shaped method” (FSM) that uses a CCC spectral index (SI) and a vegetation SI to create a two-dimensional scatter map in which the three vertices represent high-CCC vegetation, low-CCC vegetation, and bare soil. The FVC at each pixel is determined based on the spatial location of the pixel in the two-dimensional scatter map, which mitigates the effects of CCC on the PDM. To evaluate the accuracy of FSM estimates of the FVC, we analyze the spectra obtained from (a) the PROSAIL model and (b) a spectrometer mounted on an unmanned aerial vehicle platform. Specifically, we use both the proposed FSM and traditional remote-sensing FVC-estimation methods (both linear and nonlinear regression and PDM) to estimate soybean FVC. Results Field soybean CCC measurements indicate that (a) the soybean CCC increases continuously from the flowering growth stage to the later-podding growth stage, and then decreases with increasing crop growth stages, (b) the coefficient of variation of soybean CCC is very large in later growth stages (31.58–35.77%) and over all growth stages (26.14%). FVC samples with low CCC are underestimated by the PDM. Linear and nonlinear regression underestimates (overestimates) FVC samples with low (high) CCC. The proposed FSM depends less on CCC and is thus a robust method that can be used for multi-stage FVC estimation of crops with strongly varying CCC. Conclusions Estimates and maps of FVC based on the later growth stages and on multiple growth stages should consider the variation of crop CCC. FSM can mitigates the effect of CCC by conducting a PDM at each CCC level. The FSM is a robust method that can be used to estimate FVC based on multiple growth stages where crop CCC varies greatly.

Funder

National Natural Science Foundation of China

National Basic Research Program of China (973 Program)

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3