A plant protein farnesylation system in prokaryotic cells reveals Arabidopsis AtJ3 produced and farnesylated in E. coli maintains its function of protecting proteins from heat inactivation

Author:

Wu Jia-Rong,Zohra Rida,Duong Ngoc Kieu Thi,Yeh Ching-Hui,Lu Chung-An,Wu Shaw-Jye

Abstract

Abstract Background Protein farnesylation involves the addition of a 15-carbon polyunsaturated farnesyl group to proteins whose C-terminus ends with a CaaX motif. This post-translational protein modification is catalyzed by a heterodimeric protein, i.e., farnesyltransferase (PFT), which is composed of an α and a β subunit. Protein farnesylation in plants is of great interest because of its important roles in the regulation of plant development, responses to environmental stresses, and defense against pathogens. The methods traditionally used to verify whether a protein is farnesylated often require a specific antibody and involve isotope labeling, a tedious and time-consuming process that poses hazardous risks. Results Since protein farnesylation does not occur in prokaryotic cells, we co-expressed a known PFT substrate (i.e., AtJ3) and both the α and β subunits of Arabidopsis PFT in E. coli in this study. Farnesylation of AtJ3 was detected using electrophoretic mobility using SDS-PAGE and confirmed using mass spectrometry. AtJ3 is a member of the heat shock protein 40 family and interacts with Arabidopsis HSP70 to protect plant proteins from heat-stress-induced denaturation. A luciferase-based protein denaturation assay demonstrated that farnesylated AtJ3 isolated from E. coli maintained this ability. Interestingly, farnesylated AtJ3 interacted with E. coli HSP70 as well and enhanced the thermotolerance of E. coli. Meanwhile, AtFP3, another known PFT substrate, was farnesylated when co-expressed with AtPFTα and AtPFTβ in E. coli. Moreover, using the same strategy to co-express rice PFT α and β subunit and a potential PFT target, it was confirmed that OsDjA4, a homolog of AtJ3, was farnesylated. Conclusion We developed a protein farnesylation system for E. coli and demonstrated its applicability and practicality in producing functional farnesylated proteins from both mono- and dicotyledonous plants.

Funder

National Science and Technology Council, Taiwan

National Science and Technology Council

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3