Rapid identification of medicinal plants via visual feature-based deep learning

Author:

Tan Chaoqun,Tian Long,Wu Chunjie,Li Ke

Abstract

Abstract Background Traditional Chinese Medicinal Plants (CMPs) hold a significant and core status for the healthcare system and cultural heritage in China. It has been practiced and refined with a history of exceeding thousands of years for health-protective affection and clinical treatment in China. It plays an indispensable role in the traditional health landscape and modern medical care. It is important to accurately identify CMPs for avoiding the affected clinical safety and medication efficacy by the different processed conditions and cultivation environment confusion. Results In this study, we utilize a self-developed device to obtain high-resolution data. Furthermore, we constructed a visual multi-varieties CMPs image dataset. Firstly, a random local data enhancement preprocessing method is proposed to enrich the feature representation for imbalanced data by random cropping and random shadowing. Then, a novel hybrid supervised pre-training network is proposed to expand the integration of global features within Masked Autoencoders (MAE) by incorporating a parallel classification branch. It can effectively enhance the feature capture capabilities by integrating global features and local details. Besides, the newly designed losses are proposed to strengthen the training efficiency and improve the learning capacity, based on reconstruction loss and classification loss. Conclusions Extensive experiments are performed on our dataset as well as the public dataset. Experimental results demonstrate that our method achieves the best performance among the state-of-the-art methods, highlighting the advantages of efficient implementation of plant technology and having good prospects for real-world applications.

Funder

Sichuan Provincial Administration of Traditional Chinese Medicine

National Natural Science Foundation of China

Science and Technology Department of Sichuan Province

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3