Seed protein biotyping in Amaranthus species: a tool for rapid identification of weedy amaranths of concern

Author:

Murphy Maxime,Hubert Julia,Wang Ruojing,Galindo-González Leonardo

Abstract

Abstract Background The Amaranthus genus contains at least 20 weedy and invasive species, including Amaranthus palmeri (palmer’s amaranth) and Amaranthus tuberculatus (tall waterhemp), two species of regulatory concern in North America, impacting production and yield in crops like corn, soybean and cotton. Amaranthus tuberculatus is regulated in Canada with limited establishment, while current climate models predict a range expansion of A. palmeri impacting crop growing areas in Ontario, Quebec and Manitoba. Since many Amaranthus species are similar in their morphology, especially at the seed stage, this demands the development of additional methods that can efficiently aid in the detection and identification of these species. Protein biotyping using Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) has been traditionally used to identify microorganism species, races and pathotypes. Major protein fractions extracted from an organism, ionized and run through a biotyper using mass spectrometry, result in protein spectra that represent a fingerprint at the species or lower taxonomic rank, providing an efficient molecular diagnostics method. Here we use a modified protein biotyping protocol to extract major protein fractions from seeds of the family Brassicaceae to test our protocol, and then implemented the standardized approach in seeds from Amaranthus species. We then created a database of Amaranthus protein spectra that can be used to test blind samples for a quick identification of species of concern. Results We generated a protein spectra database with 16 Amaranthus species and several accessions per species, spanning target species of regulatory concern and species which are phylogenetically related or easily confused at the seed stage due to phenotypic plasticity. Testing of two Amaranthus blind sample seed sets against this database showed accuracies of 100% and 87%, respectively. Conclusions Our method is highly efficient in identifying Amaranthus species of regulatory concern. The mismatches between our protein biotyping approach and phenotypic identification of seeds are due to absence of the species in the database or close phylogenetic relationship between the species. While A. palmeri cannot be distinguished from A. watsonii, there is evidence these two species have the same native range and are closely related.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Reference69 articles.

1. Plant Protection Act [https://laws-lois.justice.gc.ca/eng/acts/p-14.8/page-1html accessed 26 September 2023].

2. Seeds Act [https://laws-lois.justice.gc.ca/eng/acts/S-8/page-1.html accessed 26 September 2023].

3. Feeds Act [https://laws-lois.justice.gc.ca/eng/acts/f-9/page-1.html accessed 26 september 2023].

4. Oliveira MC, Jhala AJ, Bernards ML, Proctor CA, Stepanovic S, Werle R. Palmer Amaranth (Amaranthus palmeri) adaptation to US midwest agroecosystems. 2022, 4:887629.

5. Beckie HJ. Herbicide-resistant weed management: focus on glyphosate. Pest Manage Sci Vol. 2011;67:1037–48.

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3