Open-source workflow design and management software to interrogate duckweed growth conditions and stress responses

Author:

Scott Madeline,de Lange Orlando,Quaranto Xavaar,Cardiff Ryan,Klavins Eric

Abstract

AbstractDuckweeds, a family of floating aquatic plants, are ideal model plants for laboratory experiments because they are small, easy to cultivate, and reproduce quickly. Duckweed cultivation, for the purposes of scientific research, requires that lineages are maintained as continuous populations of asexually propagating fronds, so research teams need to develop optimized cultivation conditions and coordinate maintenance tasks for duckweed stocks. Additionally, computational image analysis is proving to be a powerful duckweed research tool, but researchers lack software tools to assist with data collection and storage in a way that can feed into scripted data analysis. We set out to support these processes using a laboratory management software called Aquarium, an open-source application developed to manage laboratory inventory and plan experiments. We developed a suite of duckweed cultivation and experimentation operation types in Aquarium, which we then integrated with novel data analysis scripts. We then demonstrated the efficacy of our system with a series of image-based growth assays, and explored how our framework could be used to develop optimized cultivation protocols. We discuss the unexpected advantages and the limitations of this approach, suggesting areas for future software tool development. In its current state, our approach helps to bridge the gap between laboratory implementation and data analytical software for duckweed biologists and builds a foundation for future development of end-to-end computational tools in plant science.

Funder

National Science Foundation

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3