A handheld device for measuring the diameter at breast height of individual trees using laser ranging and deep-learning based image recognition

Author:

Song ChuangyeORCID,Yang Bin,Zhang Lin,Wu Dongxiu

Abstract

Abstract Background Accurate and efficient measurement of the diameter at breast height (DBH) of individual trees is essential for forest inventories, ecological management, and carbon budget estimation. However, traditional diameter tapes are still the most widely used dendrometers in forest surveys, which makes DBH measurement time-consuming and labor-intensive. Automatic and easy-to-use devices for measuring DBH are highly anticipated in forest surveys. In this study, we present a handheld device for measuring the DBH of individual trees that uses digital cameras and laser ranging, allowing for an instant, automated, and contactless measurement of DBH. Results The base hardware of this device is a digital camera and a laser rangefinder, which are used to take a picture of the targeted tree trunk and record the horizontal distance between the digital camera and the targeted tree, respectively. The core software is composed of lightweight convolutional neural networks (CNNs), which includes an attention-focused mechanism for detecting the tree trunk to log the number of pixels between the edges. We also calibrated the digital camera to correct the distortion introduced by the lens system, and obtained the normalized focal length. Parameters including the horizontal distance between the digital camera and the targeted tree, number of pixels between the edges of the tree trunk, and normalized focal length were used to calculate the DBH based on the principles of geometrical optics. The measured diameter values, and the longitudes and latitudes of the measurement sites, were recorded in a text file, which is convenient to export to external flash disks. The field measurement accuracy test showed that the BIAS of the newly developed device was − 1.78 mm, and no significant differences were found between the measured diameter values and the true values (measured by the conventional tape). Furthermore, compared with most other image-based instruments, our device showed higher measurement accuracy. Conclusions The newly developed handheld device realized efficient, accurate, instant, and non-contact measurements of DBH, and the CNNs were proven to be successful in the detection of the tree trunk in our research. We believe that the newly developed device can fulfill the precision requirement in forest surveys, and that the application of this device can improve the efficiency of DBH measurements in forest surveys.

Funder

Ministry of Science and Technology of the People's Republic of China

Chinese Academy of Science

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3