An exploration of the influence of ZnO NPs treatment on germination of radish seeds under salt stress based on the YOLOv8-R lightweight model

Author:

Ouyang Zhiqian,Fu Xiuqing,Zhong Zhibo,Bai Ruxiao,Cheng Qianzhe,Gao Ge,Li Meng,Zhang Haolun,Zhang Yaben

Abstract

Abstract Background Since traditional germination test methods have drawbacks such as slow efficiency, proneness to error, and damage to seeds, a non-destructive testing method is proposed for full-process germination of radish seeds, which improves the monitoring efficiency of seed quality. Results Based on YOLOv8n, a lightweight test model YOLOv8-R is proposed, where the number of parameters, the amount of calculation, and size of weights are significantly reduced by replacing the backbone network with PP-LCNet, the neck part with CCFM, the C2f of the neck part with OREPA, the SPPF with FocalModulation, and the Detect of the head part with LADH. The ablation test and comparative test prove the performance of the model. With adoption of germination rate, germination index, and germination potential as the three vitality indicators, the seed germination phenotype collection system and YOLOv8-R model are used to analyze the full time-series sequence effects of different ZnO NPs concentrations on germination of radish seeds under varying degrees of salt stress. Conclusions The results show that salt stress inhibits the germination of radish seeds and that the inhibition effect is more obvious with the increased concentration of NaCl solution; in cultivation with deionized water, the germination rate of radish seeds does not change significantly with increased concentration of ZnO NPs, but the germination index and germination potential increase initially and then decline; in cultivation with NaCl solution, the germination rate, germination potential and germination index of radish seeds first increase and then decline with increased concentration of ZnO NPs.

Funder

Major Science and Technology Projects of Xinjiang Academy of Agricultural and Reclamation Sciences

Jiangsu Agriculture Science and Technology Innovation Fund

Hainan Seed Industry Laboratory

Jiangsu Province Seed Industry Revitalization Unveiled Project

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3