A protocol for a turbidimetric assay using a Saccharomyces cerevisiae thiamin biosynthesis mutant to estimate total vitamin B1 content in plant tissue samples

Author:

Strobbe Simon,Verstraete Jana,Fitzpatrick Teresa B.,Stove Christophe,Van Der Straeten Dominique

Abstract

Abstract Background Understanding thiamin (thiamine; vitamin B1) metabolism in plants is crucial, as it impacts plant nutritional value as well as stress tolerance. Studies aimed at elucidating novel aspects of thiamin in plants rely on adequate assessment of thiamin content. Mass spectrometry-based methods provide reliable quantification of thiamin as well as closely related biomolecules. However, these techniques require expensive equipment and expertise. Microbiological turbidimetric assays can evaluate the presence of thiamin in a given sample, only requiring low-cost, standard lab equipment. Although these microbiological assays do not reach the accuracy provided by mass spectrometry-based methods, the ease with which they can be deployed in an inexpensive and high-throughput manner, makes them a favorable method in many circumstances. However, the thiamin research field could benefit from a detailed step-by-step protocol to perform such assays as well as a further assessment of its potential and limitations. Results Here, we show that the Saccharomyces cerevisiae thiamin biosynthesis mutant thi6 is an ideal candidate to be implemented in a turbidimetric assay aimed at assessing the content of thiamin and its phosphorylated equivalents (total vitamer B1). An optimized protocol was generated, adapted from a previously established microbiological assay using the thi4 mutant. A step-by-step guidance for this protocol is presented. Furthermore, the applicability of the assay is illustrated by assessment of different samples, including plant as well as non-plant materials. In doing so, our work provides an extension of the applicability of the microbiological assay on top of providing important considerations upon implementing the protocol. Conclusions An inexpensive, user-friendly protocol, including step-by-step guidance, which allows adequate estimation of vitamer B1 content of samples, is provided. The method is well-suited to screen materials to identify altered vitamer B1 content, such as in metabolic engineering or screening of germplasm.

Funder

Bijzonder Onderzoeksfonds UGent

Fonds Wetenschappelijk Onderzoek

Swiss National Science Foundation for funding

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3