Highly efficient Agrobacterium rhizogenes-mediated transformation for functional analysis in woodland strawberry

Author:

Yan Huiqing,Ma Dandan,Yi Peipei,Sun Guilian,Chen Xingyan,Yi Yin,Huang Xiaolong

Abstract

Abstract Background The diploid woodland strawberry (Fragaria vesca) is an excellent model plant for investigating economically significant traits and several genetic resources within the Rosaceae family. Agrobacterium rhizogenes-mediated hairy root transformation is an alternative for exploring gene functions, especially the genes specifically expressed in roots. However, the hairy root transformation has not been established in strawberry. Results Here, we described an efficient and rapid hairy root transgenic system for strawberry using A. rhizogenes. Strain of A. rhizogenes MSU440 or C58C1 was the most suitable for hairy root transformation. The transformation efficiency was highest when tissues contained hypocotyls as explants. The optimal procedure involves A. rhizogenes at an optical density (OD600) of 0.7 for 10 min and co-cultivation duration for four days, achieving a transgenic efficiency of up to 71.43%. An auxin responsive promoter DR5ver2 carrying an enhanced green fluorescent protein (eGFP) marker was transformed by A. rhizogenes MSU440, thereby generating transgenic hairy roots capable of high eGFP expression in root tip and meristem of strawberry where auxin accumulated. Finally, this system was applied for functional analysis using jGCaMP7c, which could sense calcium signals. A significant upsurge in eGFP expression in the transgenic hairy roots was displayed after adding calcium chloride. The results suggested that this approach was feasible for studying specific promoters and could be a tool to analyze gene functions in the roots of strawberries. Conclusion We established a rapid and efficient hairy root transformation in strawberry by optimizing parameters, which was adequate for promoter analysis and functional characterization of candidate genes in strawberry and other rosaceous plants.

Funder

National Natural Science Foundation of China

Joint Fund of the National Natural Science Foundation of China and the Karst Science Research Center of Guizhou Province

Natural Science Foundation of Guizhou Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3