Karst vegetation coverage detection using UAV multispectral vegetation indices and machine learning algorithm

Author:

Pan Wen,Wang Xiaoyu,Sun Yan,Wang Jia,Li Yanjie,Li Sheng

Abstract

Abstract Background Karst vegetation is of great significance for ecological restoration in karst areas. Vegetation Indices (VIs) are mainly related to plant yield which is helpful to understand the status of ecological restoration in karst areas. Recently, karst vegetation surveys have gradually shifted from field surveys to remote sensing-based methods. Coupled with the machine learning methods, the Unmanned Aerial Vehicle (UAV) multispectral remote sensing data can effectively improve the detection accuracy of vegetation and extract the important spectrum features. Results In this study, UAV multispectral image data at flight altitudes of 100 m, 200 m, and 400 m were collected to be applied for vegetation detection in a karst area. The resulting ground resolutions of the 100 m, 200 m, and 400 m data are 5.29, 10.58, and 21.16 cm/pixel, respectively. Four machine learning models, including Random Forest (RF), Support Vector Machine (SVM), Gradient Boosting Machine (GBM), and Deep Learning (DL), were compared to test the performance of vegetation coverage detection. 5 spectral values (Red, Green, Blue, NIR, Red edge) and 16 VIs were selected to perform variable importance analysis on the best detection models. The results show that the best model for each flight altitude has the highest accuracy in detecting its training data (over 90%), and the GBM model constructed based on all data at all flight altitudes yields the best detection performance covering all data, with an overall accuracy of 95.66%. The variables that were significantly correlated and not correlated with the best model were the Modified Soil Adjusted Vegetation Index (MSAVI) and the Modified Anthocyanin Content Index (MACI), respectively. Finally, the best model was used to invert the complete UAV images at different flight altitudes. Conclusions In general, the GBM_all model constructed based on UAV imaging with all flight altitudes was feasible to accurately detect karst vegetation coverage. The prediction models constructed based on data from different flight altitudes had a certain similarity in the distribution of vegetation index importance. Combined with the method of visual interpretation, the karst green vegetation predicted by the best model was in good agreement with the ground truth, and other land types including hay, rock, and soil were well predicted. This study provided a methodological reference for the detection of karst vegetation coverage in eastern China.

Funder

Fundamental Research Funds of CAF

Fundamental Research Funds of RISF

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3