Development of a DNA-based real-time PCR assay for the quantification of Colletotrichum camelliae growth in tea (Camellia sinensis)

Author:

He Shengnan,Chen Huchen,Wei Yi,An Tai,Liu ShouanORCID

Abstract

Abstract Background Tea, which is produced from new shoots of existing tea plants (Camellia sinensis), is one of the most popular, non-alcoholic, healthy beverages worldwide. Colletotrichum camelliae is one of the dominant fungal pathogens of tea. The interaction of C. camelliae with tea could be a useful pathosystem to elucidate various aspects of woody, medicinal plant-fungal interactions. Currently, many studies characterizing resistance or virulence and aggressiveness use lesion size at the infection sites on the leaves to quantify the growth of the pathogen. However, this method does not offer the sensitivity needed for the robust quantification of small changes in aggressiveness or the accurate quantification of pathogen growth at the early stages of infection. Results A quantitative real-time polymerase chain reaction (qRT-PCR) assay was developed for the quantification of C. camelliae growth on tea plant. This method was based on the comparison of fungal DNA in relation to plant biomass. This assay was used to investigate the phenotypes of tea plant cultivars in response to C. camelliae infection. Two cultivars, Zhongcha 108 (ZC108) and Longjing 43 (LJ43), were tested with this method. ZC108 was previously reported as an anthracnose-resistant cultivar against C. camelliae, while LJ43 was susceptible. The traditional lesion measurement method showed that both cultivars were susceptible to a virulent strain of C. camelliae, while the qRT-PCR approach indicated that very little fungal growth occurred in the anthracnose-resistant cultivar ZC108. The observed results in this study were consistent with previously published research. In addition, the DNA-based real-time PCR method was applied for analysis of pathogenic differences in general C. camelliae isolates and among several Colletotrichum spp that infect tea. Conclusions This study showed that the DNA-based qRT-PCR technique is rapid, highly sensitive and easily applicable for routine experiments and could be used in screening for resistant tea plant cultivars or to identify differences in pathogen aggressiveness within and among Colletotrichum species.

Funder

National Natural Science Foundation of China

Fund for Undergraduates of Jilin University

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3