Identification of the initial water-site and movement in Gleditsia sinensis seeds and its relation to seed coat structure

Author:

Zhu Mingwei,Dai Song,Ma Qiuyue,Li ShuxianORCID

Abstract

Abstract Background Water uptake is essential for seed germination. However, Gleditsia sinensis seeds have a water-impermeable seed coat, which is beneficial for its adaption to the environment, but prohibits its germination without treatment. This feature may be associated with the structure of the seed coat. Thus, the aim of this research was to identify and describe the initial water uptake site and water movement and to determine the relationship between seed coat structure and water absorption. Results A water temperature of 80 °C was optimal to break the hardseededness of G. sinensis seeds. Scanning electron microscopy (SEM) images revealed that the seed coat consisted of a palisade layer and light line that can hinder water entry into the seed. Also, a structure of vascular bundles existed in the hilar region. Hot water treatment caused the tightly closed micropyle to open and the cavity beneath it expanded; the layer of palisade cells in the lens was raised. The embryo dye-tracking tests showed that the radicle tip was the initial region to be stained red. After staining for 24 h, the red-stained area on the vascular bundle side of cotyledon was more extensive than that on the other side. Further studies by MRI maps indicated that the micropyle was the initial site for water imbibition. Some water then migrated along the space between the seed coat and the endosperm to the chalazal; simultaneously, the rest of the water reached the embryonic axis and spread into cotyledons. The maps of 20–24 h showed that water was unevenly distributed within the cotyledons in a way that the edge parts were more hydrated than the center. Blocking tests showed that the hilar region was the initial and an important region during seed imbibition. The medial region and chalazal portion were capable of imbibing water when the hilar region was blocked, but water absorption was later and slower than that through the hilar region. Conclusion MRI technology provides a promising and non-invasive technique to identify the water gap and the path of water movement in the seed. Combined with the results of SEM, the relation between seed coat and its imbibition can be inferred.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3