WheatLFANet: in-field detection and counting of wheat heads with high-real-time global regression network

Author:

Ye Jianxiong,Yu Zhenghong,Wang Yangxu,Lu Dunlu,Zhou Huabing

Abstract

Abstract Background Detection and counting of wheat heads are of crucial importance in the field of plant science, as they can be used for crop field management, yield prediction, and phenotype analysis. With the widespread application of computer vision technology in plant science, monitoring of automated high-throughput plant phenotyping platforms has become possible. Currently, many innovative methods and new technologies have been proposed that have made significant progress in the accuracy and robustness of wheat head recognition. Nevertheless, these methods are often built on high-performance computing devices and lack practicality. In resource-limited situations, these methods may not be effectively applied and deployed, thereby failing to meet the needs of practical applications. Results In our recent research on maize tassels, we proposed TasselLFANet, the most advanced neural network for detecting and counting maize tassels. Building on this work, we have now developed a high-real-time lightweight neural network called WheatLFANet for wheat head detection. WheatLFANet features a more compact encoder-decoder structure and an effective multi-dimensional information mapping fusion strategy, allowing it to run efficiently on low-end devices while maintaining high accuracy and practicality. According to the evaluation report on the global wheat head detection dataset, WheatLFANet outperforms other state-of-the-art methods with an average precision AP of 0.900 and an R2 value of 0.949 between predicted values and ground truth values. Moreover, it runs significantly faster than all other methods by an order of magnitude (TasselLFANet: FPS: 61). Conclusions Extensive experiments have shown that WheatLFANet exhibits better generalization ability than other state-of-the-art methods, and achieved a speed increase of an order of magnitude while maintaining accuracy. The success of this study demonstrates the feasibility of achieving real-time, lightweight detection of wheat heads on low-end devices, and also indicates the usefulness of simple yet powerful neural network designs.

Funder

2022 key scientific research project of ordinary universities in Guangdong Province

the Collaborative Intelligent Robot Production & Education Integrates Innovative Application Platform Based on the Industrial Internet

2020 Guangdong Rural Science and Technology Mission Project

the Engineering Research Centre for Intelligent equipment manufacturing

2022 Guangdong province ordinary universities characteristic innovation project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3