Scoring the number of B chromosomes in Zea mays L. using droplet digital PCR assay

Author:

Svačina Radim,Hloušková Lucie,Karafiátová Miroslava,Bartoš Jan

Abstract

Abstract Background B chromosomes are classified as dispensable genomic components tolerated by cells, which are transmitted to progeny despite providing no benefit in most cases. They have been observed in over 2800 species of plants, animals and fungi, including numerous maize accessions. As maize is one of the most important crops worldwide, research on the maize B chromosome has been pioneering in the field. The characteristic of the B chromosome is its irregular inheritance. This results in offspring with a different number of B chromosomes compared to the parents. However, the exact number of B chromosomes in the studied plants is a crucial piece of information. Currently, assessing the number of B chromosomes in maize largely depends on cytogenetic analyses, which are laborious and time-consuming. We present an alternative approach based on the droplet digital PCR technique (ddPCR), which is faster, more efficient and provides the results within one day with the same level of accuracy. Results In this study, we report a rapid and straightforward protocol for determining the number of B chromosomes in maize plants. We developed a droplet digital PCR assay using specific primers and a TaqMan probe for the B-chromosome-linked gene and a single-copy reference gene on maize chromosome 1. The performance of the assay was successfully verified by comparison with the results of cytogenetic analyses performed in parallel. Conclusions The protocol significantly improves the efficiency of B chromosome number assessment in maize compared to cytogenetic approaches. The assay has been developed to target conserved genomic regions and can therefore be applied to a wide range of diverged maize accessions. This universal approach can be modified for chromosome number detection in other species, not only for the B chromosome but also for any other chromosome in aneuploid constitution.

Funder

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3