Plant disease prescription recommendation based on electronic medical records and sentence embedding retrieval

Author:

Ding Junqi,Qiao Yan,Zhang Lingxian

Abstract

Abstract Background In the era of Agri 4.0 and the popularity of Plantwise systems, the availability of Plant Electronic Medical Records has provided opportunities to extract valuable disease information and treatment knowledge. However, developing an effective prescription recommendation method based on these records presents unique challenges, such as inadequate labeling data, lack of structural and linguistic specifications, incorporation of new prescriptions, and consideration of multiple factors in practical situations. Results This study proposes a plant disease prescription recommendation method called PRSER, which is based on sentence embedding retrieval. The semantic matching model is created using a pre-trained language model and a sentence embedding method with contrast learning ideas, and the constructed prescription reference database is retrieved for optimal prescription recommendations. A multi-vegetable disease dataset and a multi-fruit disease dataset are constructed to compare three pre-trained language models, four pooling types, and two loss functions. The PRSER model achieves the best semantic matching performance by combining MacBERT, CoSENT, and CLS pooling, resulting in a Pearson coefficient of 86.34% and a Spearman coefficient of 77.67%. The prescription recommendation capability of the model is also verified. PRSER performs well in closed-set testing with Top-1/Top-3/Top-5 accuracy of 88.20%/96.07%/97.70%; and slightly worse in open-set testing with Top-1/Top-3/Top-5 accuracy of 82.04%/91.50%/94.90%. Finally, a plant disease prescription recommendation system for mobile terminals is constructed and its generalization ability with incomplete inputs is verified. When only symptom information is available without environment and plant information, our model shows slightly lower accuracy with Top-1/Top-3/Top-5 accuracy of 75.24%/88.35%/91.99% in closed-set testing and Top-1/Top-3/Top-5 accuracy of 75.08%/87.54%/89.84% in open-set testing. Conclusions The experiments validate the effectiveness and generalization ability of the proposed approach for recommending plant disease prescriptions. This research has significant potential to facilitate the implementation of artificial intelligence in plant disease treatment, addressing the needs of farmers and advancing scientific plant disease management.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3