Feature enhancement guided network for yield estimation of high-density jujube

Author:

Cheng Fengna,Wei Juntao,Jiang Shengqin,Chen Qing,Ru Yu,Zhou Hongping

Abstract

Abstract Background Automatic and precise jujube yield prediction is important for the management of orchards and the allocation of resources. Traditional yield prediction techniques are based on object detection, which predicts a box to achieve target statistics, but are often used in sparse target settings. Those techniques, however, are challenging to use in real-world situations with particularly dense jujubes. The box labeling is labor- and time-intensive, and the robustness of the system is adversely impacted by severe occlusions. Therefore, there is an urgent need to develop a robust method for predicting jujube yield based on images. But in addition to the extreme occlusions, it is also challenging due to varying scales, complex backgrounds, and illumination variations. Results In this work, we developed a simple and effective feature enhancement guided network for yield estimation of high-density jujube. It has two key designs: Firstly, we proposed a novel label representation method based on uniform distribution, which provides a better characterization of object appearance compared to the Gaussian-kernel-based method. This new method is simpler to implement and has shown greater success. Secondly, we introduced a feature enhancement guided network for jujube counting, comprising three main components: backbone, density regression module, and feature enhancement module. The feature enhancement module plays a crucial role in perceiving the target of interest effectively and guiding the density regression module to make accurate predictions. Notably, our method takes advantage of this module to improve the overall performance of our network. To validate the effectiveness of our method, we conducted experiments on a collected dataset consisting of 692 images containing a total of 40,344 jujubes. The results demonstrate the high accuracy of our method in estimating the number of jujubes, with a mean absolute error (MAE) of 9.62 and a mean squared error (MSE) of 22.47. Importantly, our method outperforms other state-of-the-art methods by a significant margin, highlighting its superiority in jujube yield estimation. Conclusions The proposed method provides an efficient image-based technique for predicting the yield of jujubes. The study will advance the application of artificial intelligence for high-density target recognition in agriculture and forestry. By leveraging this technique, we aim to enhance the level of planting automation and optimize resource allocation.

Funder

Youth Science and Technology Innovation Foundation of Nanjing Forestry University

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3