Automatic kernel counting on maize ear using RGB images

Author:

Wu DiORCID,Cai Zhen,Han Jiwan,Qin Huawei

Abstract

Abstract Background The number of kernels per ear is one of the major agronomic yield indicators for maize. Manual assessment of kernel traits can be time consuming and laborious. Moreover, manually acquired data can be influenced by subjective bias of the observer. Existing methods for counting of kernel number are often unstable and costly. Machine vision technology allows objective extraction of features from image sensor data, offering high-throughput and low-cost advantages. Results Here, we propose an automatic kernel recognition method which has been applied to count the kernel number based on digital colour photos of the maize ears. Images were acquired under both LED diffuse (indoors) and natural light (outdoor) conditions. Field trials were carried out at two sites in China using 8 maize varieties. This method comprises five steps: (1) a Gaussian Pyramid for image compression to improve the processing efficiency, (2) separating the maize fruit from the background by Mean Shift Filtering algorithm, (3) a Colour Deconvolution (CD) algorithm to enhance the kernel edges, (4) segmentation of kernel zones using a local adaptive threshold, (5) an improved Find-Local-Maxima to recognize the local grayscale peaks and determine the maize kernel number within the image. The results showed good agreement (> 93%) in terms of accuracy and precision between ground truth (manual counting) and the image-based counting. Conclusions The proposed algorithm has robust and superior performance in maize ear kernel counting under various illumination conditions. In addition, the approach is highly-efficient and low-cost. The performance of this method makes it applicable and satisfactory for real-world breeding programs.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3