A highly efficient protocol for isolation of protoplast from China, Assam and Cambod types of tea plants [Camellia sinensis (L.) O. Kuntze]

Author:

Kumar Abhishek,Rawat Nikhil,Thakur Shweta,Joshi Rohit,Pandey Shiv Shanker

Abstract

Abstract Background Tea is the most popular beverage worldwide second only to water. Its demand is tremendously rising due to increased awareness of its medicinal importance. The quality and uses of tea depend on the tea-types which are mainly three types including China, Assam and Cambod type having distinct compositions of secondary metabolites. Huge variation in secondary metabolites in different tea-types and cultivars limited the successful application of various approaches used for its trait improvement. The efficiency of a protocol for isolation of protoplast is specific to the types and cultivars of tea plants. The existing tea protoplast-isolation protocols [which were optimized for tea-types (China and Assam type) and Chinese cultivars grown in China] were found ineffective on types/cultivars grown in India due to type/cultivar variability. Therefore, optimization of protoplast-isolation protocol is essential for tea-types/cultivars grown in India, as it is the second largest producer of tea and the largest producer of black tea. Here, efforts were made to develop an efficient protoplast-isolation protocol from all major types of tea (China, Assam and Cambod types) grown in India and also from three types of tender leaves obtained from field-grown, hydroponically-grown and tissue culture-grown tea plants. Results Developed protoplast-isolation protocol was effective for different types of leaf tissue obtained from the tender leaves of field-grown, hydroponically-grown and tissue culture-grown tea plants. Moreover, optimized protocol effectively worked on all three types of tea including China, Assam and Cambod types cultivated in India. The digestion of leaves with 3% cellulase R-10, 0.6% macerozyme, 1% hemicellulase and 4% polyvinylpyrrolidone for 12 h at 28ºC yielded approximately 3.8–4.6 × 107 protoplasts per gram fresh tissue and 80–95% viability in selected tea cultivars, and tissue culture plant material was found most appropriate for protoplast isolation. Conclusions In conclusion, we reported an efficient protocol for isolation of protoplasts from tender tea leaves of all major tea-types (China, Assam and Cambod) grown in India. Moreover, the protocol is also effective for tender-leaf tissue of field-grown, hydroponically-grown and tissue culture-grown tea plants. The findings are expected to contribute to the genetic improvement of tea traits widely.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3