Automatic rape flower cluster counting method based on low-cost labelling and UAV-RGB images

Author:

Li Jie,Wang Enguo,Qiao Jiangwei,Li Yi,Li Li,Yao Jian,Liao Guisheng

Abstract

Abstract Background The flowering period is a critical time for the growth of rape plants. Counting rape flower clusters can help farmers to predict the yield information of the corresponding rape fields. However, counting in-field is a time-consuming and labor-intensive task. To address this, we explored a deep learning counting method based on unmanned aircraft vehicle (UAV). The proposed method developed the in-field counting of rape flower clusters as a density estimation problem. It is different from the object detection method of counting the bounding boxes. The crucial step of the density map estimation using deep learning is to train a deep neural network that maps from an input image to the corresponding annotated density map. Results We explored a rape flower cluster counting network series: RapeNet and RapeNet+. A rectangular box labeling-based rape flower clusters dataset (RFRB) and a centroid labeling-based rape flower clusters dataset (RFCP) were used for network model training. To verify the performance of RapeNet series, the paper compares the counting result with the real values of manual annotation. The average accuracy (Acc), relative root mean square error (rrMSE) and $$R^2$$ R 2 of the metrics are up to 0.9062, 12.03 and 0.9635 on the dataset RFRB, and 0.9538, 5.61 and 0.9826 on the dataset RFCP, respectively. The resolution has little influence for the proposed model. In addition, the visualization results have some interpretability. Conclusions Extensive experimental results demonstrate that the RapeNet series outperforms other state-of-the-art counting approaches. The proposed method provides an important technical support for the crop counting statistics of rape flower clusters in field.

Funder

Open Foundation of Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System

Agricultural Science and Technology Innovation Project

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3