A cell suspension based uptake method to study high affinity glucosinolate transporters

Author:

Nambiar Deepti M.,Kumari Juhi,Arya Gulab C.,Singh Amarjeet K.,Bisht Naveen C.ORCID

Abstract

Abstract Background Glucosinolates are an important class of secondary metabolites characteristic to the order Brassicales. They are known to play a major role in plant defense and from the human perspective, can be anticarcinogenic or antinutritive. GTRs are plasma-membrane localized high affinity glucosinolate transporters, which are important components of the source (leaf) to sink (seed) translocation of intact glucosinolates in members of Brassicaceae family. GTRs are identified as major candidates for Brassica crop improvement, thus dictating a need for their functional characterization. However, currently there are limitations in availability of heterologous assay systems for functional characterization of plant secondary metabolite transporters. To date, the animal-based Xenopus oocyte system is the best established heterologous system for functional characterization of these transporters. Inherent biochemical and physiological attributes unique to the plant membranes necessitate the need for developing plant-based transporters assay systems as well. Methods In this study, Agrobacterium mediated transformation was used to develop GTR expressing cotton cell lines (CCL-1) for functional characterization of the Arabidopsis high affinity glucosinolate transporters, AtGTR1 and AtGTR2. Following sub-cellular localization of AtGTRs, we standardized the glucosinolate uptake assays using cell suspension cultures of AtGTR expressing CCL-1 its requirement of pH, salt, and time based glucosinolate uptake. Using the GTR expressing CCL-1, we subsequently performed kinetic analysis of AtGTR1 and AtGTR2 for different glucosinolate substrates, sinigrin, gluconapin and sinalbin. Results Several clones expressing each of AtGTR1 and AtGTR2 were obtained showing high level of GTR expression and were maintained through regular sub-culturing. Both AtGTR1 and AtGTR2 are predominantly plasma-localized proteins when overexpressed in CCL-1 cells. Uptake assays were standardized, suggesting that glucosinolate uptake of GTR expressing CCL-1 is robust within the physiological pH range 5–6, and at lower concentration of nitrate salts. GTR expressing CCL-1 cells show increasing glucosinolate accumulation in time course experiment. Kinetic studies over a wide glucosinolate concentrations (10–800 µM) revealed that our novel assay system displayed robust GTR-mediated uptake of different glucosinolates and unambiguously helps elucidate the saturable kinetics of GTRs. Our system confirms the high affinity of AtGTRs for both aliphatic and aromatic glucosinolates. Conclusion The transporter assay system described in this study holds potential for studying sub-functionalization amongst GTR homologs present across Brassicaceae family. The fast growing CCL-1 cells, confer the benefits of an in vitro system for quick assays and is plant based thus enabling optimal expression without sequence modifications. The efficient functioning of the GTR transporters in the heterologous CCL-1 opens the possibility of using this plant cell suspension system for functional characterization of other metabolite transporters.

Funder

Department of Biotechnology

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3