Abstract
Abstract
Background
How to control the physical damage during maize kernel harvesting is a major problem for both mechanical designers and plant breeders. A limitation of addressing this problem is lacking a reliable method for assessing the relation between kernel damage susceptibility and threshing quality. The design, construction, and testing of a portable tool called “HANDY”, which can assess the resistance to mechanical crushing in maize kernel. HANDY can impact the kernel with a special accelerator at a given rotating speed and then cause measurable damage to the kernel. These factors are varied to determine the ideal parameters for operating the HANDY.
Results
Breakage index (BI, target index of HANDY), decreased as the moisture content of kernel increased or the rotating speed decreased within the tested range. Furthermore, the HANDY exhibited a greater sensitivity in testing kernels at higher moisture level influence on the susceptibility of damage kernel than that in Breakage Susceptibility tests, particularly when the centrifugation speed is about 1800 r/min and the centrifugal disc type is curved. Considering that the mechanical properties of kernels vary greatly as the moisture content changes, a subsection linear (average goodness of fit is 0.9) to predict the threshing quality is built by piecewise function analysis, which is divided by kernel moisture. Specifically, threshing quality is regarded as a function of the measured result of the HANDY. Five maize cultivars are identified with higher damage resistance among 21 tested candidate varieties.
Conclusions
The HANDY provides a quantitative assessment of the mechanical crushing resistance of maize kernel. The BI is demonstrated to be a more robust index than breakage susceptibility (BS) when evaluating threshing quality in harvesting in terms of both reliability and accuracy. This study also offers a new perspective for evaluating the mechanical crushing resistance of grains and provides technical support for breeding and screening maize varieties that are suitable for mechanical harvesting.
Funder
Ministry of Science and Technology of the People's Republic of China
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference37 articles.
1. Li SK, Wang KR, Xie RZ, Li LL, Ming B, Hou P, et al. Grain breakage rate of maize by mechanical harvesting in China. Crops. 2017;2:76–80 (in Chinese with English abstract).
2. Wan KR, Li SK. Progresses in research on grain broken rate by mechanical grain harvesting. Sci Agric Sin. 2017;50(11):2018–26 (in Chinese with English abstract).
3. Fang HM, Niu MM, Shi S, Liu H, Zhou J. Effect of harvesting methods and grain moisture content on maize harvesting quality. Trans Chin Soc Agric Eng . 2019;35(18):11–8 (in Chinese with English abstract).
4. Li LL, Xue J, Xie RZ, Wang KR, Ming B, Hou P, et al. Effects of grain moisture content on mechanical grain harvesting quality of summer maize. Acta Agron Sin. 2018;44(12):1747–54.
5. Su Y, Cui T, Zhang DX, Xia GY, Gao XJ, He XW, et al. Damage resistance and compressive properties of bulk corn kernels at varying pressing factors: experiments and modeling. J Food Process Eng. 2019. https://doi.org/10.1111/jfpe.13267.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献