LeTra: a leaf tracking workflow based on convolutional neural networks and intersection over union

Author:

Jurado-Ruiz FedericoORCID,Nguyen Thu-PhuongORCID,Peller JosephORCID,Aranzana María JoséORCID,Polder GerritORCID,Aarts Mark G. M.ORCID

Abstract

Abstract Background The study of plant photosynthesis is essential for productivity and yield. Thanks to the development of high-throughput phenotyping (HTP) facilities, based on chlorophyll fluorescence imaging, photosynthetic traits can be measured in a reliable, reproducible and efficient manner. In most state-of-the-art HTP platforms, these traits are automatedly analyzed at individual plant level, but information at leaf level is often restricted by the use of manual annotation. Automated leaf tracking over time is therefore highly desired. Methods for tracking individual leaves are still uncommon, convoluted, or require large datasets. Hence, applications and libraries with different techniques are required. New phenotyping platforms are initiated now more frequently than ever; however, the application of advanced computer vision techniques, such as convolutional neural networks, is still growing at a slow pace. Here, we provide a method for leaf segmentation and tracking through the fine-tuning of Mask R-CNN and intersection over union as a solution for leaf tracking on top-down images of plants. We also provide datasets and code for training and testing on both detection and tracking of individual leaves, aiming to stimulate the community to expand the current methodologies on this topic. Results We tested the results for detection and segmentation on 523 Arabidopsis thaliana leaves at three different stages of development from which we obtained a mean F-score of 0.956 on detection and 0.844 on segmentation overlap through the intersection over union (IoU). On the tracking side, we tested nine different plants with 191 leaves. A total of 161 leaves were tracked without issues, accounting to a total of 84.29% correct tracking, and a Higher Order Tracking Accuracy (HOTA) of 0.846. In our case study, leaf age and leaf order influenced photosynthetic capacity and photosynthetic response to light treatments. Leaf-dependent photosynthesis varies according to the genetic background. Conclusion The method provided is robust for leaf tracking on top-down images. Although one of the strong components of the method is the low requirement in training data to achieve a good base result (based on fine-tuning), most of the tracking issues found could be solved by expanding the training dataset for the Mask R-CNN model.

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3