High-throughput long paired-end sequencing of a Fosmid library by PacBio

Author:

Dai Zhaozhao,Li Tong,Li Jiadong,Han Zhifei,Pan Yonglong,Tang Sha,Diao Xianmin,Luo Meizhong

Abstract

Abstract Background Large insert paired-end sequencing technologies are important tools for assembling genomes, delineating associated breakpoints and detecting structural rearrangements. To facilitate the comprehensive detection of inter- and intra-chromosomal structural rearrangements or variants (SVs) and complex genome assembly with long repeats and segmental duplications, we developed a new method based on single-molecule real-time synthesis sequencing technology for generating long paired-end sequences of large insert DNA libraries. Results A Fosmid vector, pHZAUFOS3, was developed with the following new features: (1) two 18-bp non-palindromic I-SceI sites flank the cloning site, and another two sites are present in the skeleton of the vector, allowing long DNA inserts (and the long paired-ends in this paper) to be recovered as single fragments and the vector (~ 8 kb) to be fragmented into 2–3 kb fragments by I-SceI digestion and therefore was effectively removed from the long paired-ends (5–10 kb); (2) the chloramphenicol (Cm) resistance gene and replicon (oriV), necessary for colony growth, are located near the two sides of the cloning site, helping to increase the proportion of the paired-end fragments to single-end fragments in the paired-end libraries. Paired-end libraries were constructed by ligating the size-selected, mechanically sheared pooled Fosmid DNA fragments to the Ampicillin (Amp) resistance gene fragment and screening the colonies with Cm and Amp. We tested this method on yeast and Setaria italica Yugu1. Fosmid-size paired-ends with an average length longer than 2 kb for each end were generated. The N50 scaffold lengths of the de novo assemblies of the yeast and S. italica Yugu1 genomes were significantly improved. Five large and five small structural rearrangements or assembly errors spanning tens of bp to tens of kb were identified in S. italica Yugu1 including deletions, inversions, duplications and translocations. Conclusions We developed a new method for long paired-end sequencing of large insert libraries, which can efficiently improve the quality of de novo genome assembly and identify large and small structural rearrangements or assembly errors.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3