Research on anthracnose grade of Camellia oleifera based on the combined LIBS and THz technology

Author:

Bin Li,Qiu Wang,Chao-hui Zhan,Zhao-yang Han,Hai Yin,Jun Liao,Yan-de LiuORCID

Abstract

Abstract Background Anthracnose of Camellia oleifera is a very destructive disease that commonly occurs in the Camellia oleifera industry, which severely restricts the development of the Camellia oleifera industry. In the early stage of the Camellia oleifera suffering from anthracnose, only the diseased parts of the tree need to be repaired in time. With the aggravation of the disease, the diseased branches need to be eradicated, and severely diseased plants should be cut down in time. At present, aiming at the problems of complex experiments and low accuracy in detecting the degree of anthracnose of Camellia oleifera, a method is proposed to detect the degree of anthracnose of Camellia oleifera leaves by using terahertz spectroscopy (THz) combined with laser-induced breakdown spectroscopy (LIBS), so as to realize the rapid, efficient, non-destructive and high-precision determination of the degree of anthracnose of Camellia oleifera. Results Mn, Ca, Ca II, Fe and other elements in the LIBS spectrum of healthy and infected Camellia oleifera leaves with different degrees of anthracnose are significantly different, and the Terahertz absorption spectra of healthy Camellia oleifera leaves, and Camellia oleifera leaves with different degrees of anthracnose there are also significant differences. Partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), and linear discriminant analysis (LDA) are used to establish the fusion spectrum anthracnose classification model of Camellia oleifera. Among them, the Root mean square error of prediction (RMSEP) and the prediction determination coefficient R2p of THz-LIBS-CARS-PLS-DA of prediction set are 0.110 and 0.995 respectively, and the misjudgment rate is 1.03%; The accuracy of the modeling set of THz (CARS)-LIBS (CARS)-SVM is 100%, and the accuracy of prediction set is 100%, after preprocessing of the multivariate scattering correction (MSC), the accuracy of the THz-LIBS-MSC-CARS modeling set is 100%, and the accuracy of prediction set is 100%; The accuracy rate of THz-LIBS-MSC-CARS-LDA of modeling set is 98.98%, and the accuracy rate of the prediction set is 96.87%. Conclusion The experimental results show that: the SVM model has higher qualitative analysis accuracy and is more stable than the PLS-DA and LDA models. The results showed that: the THz spectrum combined with the LIBS spectrum could be used to separate healthy Camellia oleifera leaves from various grades of anthracnose Camellia oleifera leaves non-destructively, quickly and accurately.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Reference24 articles.

1. Ai-Xian J, Guo-Ying Z, Li H. Forest pest and disease. 2009;28:27–31.

2. Yande L, Xue G, Mengjie C, Zhaoguo H, Xiaodong L, Jia X. Detection of Anthracnose in Camellia oleifera Based on Laser-Induced Breakdown Spectroscopy. Laser Optoelectronics Progress. 2020;57:246–54.

3. Xiaochun S, Chengjiang R, Chaowei X, Qiming An, Ming Y, Tao Z, Yanmei Z, Siqi Y, Menghan Ma, Yuanling Z. Identification of polygenes sequence of new pathogenic strain colletotrichum Kahawae of Camellia oleifera anthracnose. Molecular Plant Breeding. 2019;17:5939–45.

4. Parikka P, Lemmetty A. Tracing Latent Infection of Colletotrichum acutatum on Strawberry by PCR. Eur J Plant Pathol. 2004;110:393–8.

5. Liu Y, Gao X, Jiang X, Gao H, Lin X, Zhang Y, Zheng Y. Detection of Anthracnose in Camellia oleifera Based on Laser-Induced Breakdown Spectroscopy. Spectroscopy Spectral Analysis. 2020;40:2815–20.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3