Testing deep placement of an 15N tracer as a method for in situ deep root phenotyping of wheat, barley and ryegrass

Author:

Chen SiORCID,Svane Simon Fiil,Thorup-Kristensen Kristian

Abstract

Abstract Background Deep rooting is one of the most promising plant traits for improving crop yield under water-limited conditions. Most root phenotyping methods are designed for laboratory-grown plants, typically measuring very young plants not grown in soil and not allowing full development of the root system. Results This study introduced the 15N tracer method to detect genotypic variations of deep rooting and N uptake, and to support the minirhizotron method. The method was tested in a new semifield phenotyping facility on two genotypes of winter wheat, seven genotypes of spring barley and four genotypes of ryegrass grown along a drought stress gradient in four individual experiments. The 15N labeled fertilizer was applied at increasing soil depths from 0.4 to 1.8 m or from 0.7 to 2.8 m through a subsurface tracer supply system, and sampling of aboveground biomass was conducted to measure the 15N uptake. The results confirm that the 15N labeling system could identify the approximate extension of the root system. The results of 15N labeling as well as root measurements made by minirhizotrons showed rather high variation. However, in the spring barley experiment, we did find correlations between root observations and 15N uptake from the deepest part of the root zone. The labeled crop rows mostly had significantly higher 15N enrichment than their neighbor rows. Conclusion We concluded that the 15N tracer method is promising as a future method for deep root phenotyping because the method will be used for phenotyping for deep root function rather than deep root growth. With some modifications to the injection principle and sampling process to reduce measurement variability, we suggest that the 15N tracer method may be a useful tool for deep root phenotyping. The results demonstrated that the minirhizotrons observed roots of the tested rows rather than their neighboring rows.

Funder

Innovationsfonden

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3