High-throughput soybean seeds phenotyping with convolutional neural networks and transfer learning

Author:

Yang Si,Zheng Lihua,He Peng,Wu Tingting,Sun Shi,Wang MinjuanORCID

Abstract

Abstract Background Effective soybean seed phenotyping demands large-scale accurate quantities of morphological parameters. The traditional manual acquisition of soybean seed morphological phenotype information is error-prone, and time-consuming, which is not feasible for large-scale collection. The segmentation of individual soybean seed is the prerequisite step for obtaining phenotypic traits such as seed length and seed width. Nevertheless, traditional image-based methods for obtaining high-throughput soybean seed phenotype are not robust and practical. Although deep learning-based algorithms can achieve accurate training and strong generalization capabilities, it requires a large amount of ground truth data which is often the limitation step. Results We showed a novel synthetic image generation and augmentation method based on domain randomization. We synthesized a plenty of labeled image dataset automatedly by our method to train instance segmentation network for high throughput soybean seeds segmentation. It can pronouncedly decrease the cost of manual annotation and facilitate the preparation of training dataset. And the convolutional neural network can be purely trained by our synthetic image dataset to achieve a good performance. In the process of training Mask R-CNN, we proposed a transfer learning method which can reduce the computing costs significantly by finetuning the pre-trained model weights. We demonstrated the robustness and generalization ability of our method by analyzing the result of synthetic test datasets with different resolution and the real-world soybean seeds test dataset. Conclusion The experimental results show that the proposed method realized the effective segmentation of individual soybean seed and the efficient calculation of the morphological parameters of each seed and it is practical to use this approach for high-throughput objects instance segmentation and high-throughput seeds phenotyping.

Funder

National Natural Science Foundation of China

the China Agriculture Research System

the National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3