Abstract
Abstract
Background
In situ analysis of biomarkers such as DNA, RNA and proteins are important for research and diagnostic purposes. At the RNA level, plant gene expression studies rely on qPCR, RNAseq and probe-based in situ hybridization (ISH). However, for ISH experiments poor stability of RNA and RNA based probes commonly results in poor detection or poor reproducibility. Recently, the development and availability of the RNAscope RNA-ISH method addressed these problems by novel signal amplification and background suppression. This method is capable of simultaneous detection of multiple target RNAs down to the single molecule level in individual cells, allowing researchers to study spatio-temporal patterning of gene expression. However, this method has not been optimized thus poorly utilized for plant specific gene expression studies which would allow for fluorescent multiplex detection. Here we provide a step-by-step method for sample collection and pretreatment optimization to perform the RNAscope assay in the leaf tissues of model monocot plant barley. We have shown the spatial distribution pattern of HvGAPDH and the low expressed disease resistance gene Rpg1 in leaf tissue sections of barley and discuss precautions that should be followed during image analysis.
Results
We have shown the ubiquitous HvGAPH and predominantly stomatal guard cell associated subsidiary cell expressed Rpg1 expression pattern in barley leaf sections and described the improve RNAscope methodology suitable for plant tissues using confocal laser microscope. By addressing the problems in the sample collection and incorporating additional sample backing steps we have significantly reduced the section detachment and experiment failure problems. Further, by reducing the time of protease treatment, we minimized the sample disintegration due to over digestion of barley tissues.
Conclusions
RNAscope multiplex fluorescent RNA-ISH detection is well described and adapted for animal tissue samples, however due to morphological and structural differences in the plant tissues the standard protocol is deficient and required optimization. Utilizing barley specific HvGAPDH and Rpg1 RNA probes we report an optimized method which can be used for RNAscope detection to determine the spatial expression and semi-quantification of target RNAs. This optimized method will be immensely useful in other plant species such as the widely utilized Arabidopsis.
Funder
USDA’s National Institute of Food and Agriculture
National Science Foundation PBI
NDSU RCA seed grant
National Science Foundation CAREER
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献