Super-resolution imaging of Douglas fir xylem cell wall nanostructure using SRRF microscopy

Author:

Donaldson Lloyd A.ORCID

Abstract

AbstractBackgroundThe nanostructure of plant cell walls is of significant biological and technological interest, but methods suited to imaging cell walls at the nanoscale while maintaining the natural water-saturated state are limited. Light microscopy allows imaging of wet cell walls but with spatial resolution limited to the micro-scale. Most super-resolution techniques require expensive hardware and/or special stains so are less applicable to some applications such as autofluorescence imaging of plant tissues.ResultsA protocol was developed for super-resolution imaging of xylem cell walls using super-resolution radial fluctuations (SRRF) microscopy combined with confocal fluorescence imaging (CLSM). We compared lignin autofluorescence imaging with acriflavin or rhodamine B staining. The SRRF technique allows imaging of wet or dry tissue with moderate improvement in resolution for autofluorescence and acriflavin staining, and a large improvement for rhodamine B staining, achieving sub 100 nm resolution based on comparison with measurements from electron microscopy. Rhodamine B staining, which represents a convolution of lignin staining and cell wall accessibility, provided remarkable new details of cell wall structural features including both circumferential and radial lamellae demonstrating nanoscale variations in lignification and cell wall porosity within secondary cell walls.ConclusionsSRRF microscopy can be combined with confocal fluorescence microscopy to provide nanoscale imaging of plant cell walls using conventional stains or autofluorescence in either the wet or dry state.

Funder

Ministry of Business, Innovation and Employment

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3