Abstract
Abstract
Background
Surface roughness has a significant effect on leaf wettability. Consequently, it influences the efficiency and effectiveness of pesticide application. Therefore, roughness measurement of leaf surface offers support to the relevant research efforts. To characterize surface roughness, the prevailing methods have drawn support from large equipment that often come with high costs and poor portability, which is not suitable for field measurement. Additionally, such equipment may even suffer from inherent drawbacks like the absence of relationship between pixel intensity and corresponding height for scanning electron microscope (SEM).
Results
An imaging system with variable object distance was created to capture images of plant leaves, and a method based on shape from focus (SFF) was proposed. The given space-variantly blurred images were processed with the proposed algorithm to obtain the surface roughness of plant leaves. The algorithm improves the current SFF method through image alignment, focus distortion correction, and the introduction of NaN values that allows it to be applied for precise 3d-reconstruction and small-scale surface roughness measurement.
Conclusion
Compared with methods that rely on optical three-dimensional interference microscope, the method proposed in this paper preserves the overall topography of leaf surface, and achieves superior cost performance at the same time. It is clear from experiments on standard gauge blocks that the RMSE of step was approximately 4.44 µm. Furthermore, according to the Friedman/Nemenyi test, the focus measure operator SML was expected to demonstrate the best performance.
Funder
Zhejiang Province Public Welfare Technology Application Research Project
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献