A practical guide to estimating the light extinction coefficient with nonlinear models—a case study on maize

Author:

Lacasa JosefinaORCID,Hefley Trevor J.,Otegui María E.,Ciampitti Ignacio A.

Abstract

Abstract Background The fraction of intercepted photosynthetically active radiation (fPARi) is typically described with a non-linear function of leaf area index (LAI) and k, the light extinction coefficient. The parameter k is used to make statistical inference, as an input into crop models, and for phenotyping. It may be estimated using a variety of statistical techniques that differ in assumptions, which ultimately influences the numerical value k and associated uncertainty estimates. A systematic search of peer-reviewed publications for maize (Zea Mays L.) revealed: (i) incompleteness in reported estimation techniques; and (ii) that most studies relied on dated techniques with unrealistic assumptions, such as log-transformed linear models (LogTLM) or normally distributed data. These findings suggest that knowledge of the variety and trade-offs among statistical estimation techniques is lacking, which hinders the use of modern approaches such as Bayesian estimation (BE) and techniques with appropriate assumptions, e.g. assuming beta-distributed data. Results The parameter k was estimated for seven maize genotypes with five different methods: least squares estimation (LSE), LogTLM, maximum likelihood estimation (MLE) assuming normal distribution, MLE assuming beta distribution, and BE assuming beta distribution. Methods were compared according to the appropriateness for statistical inference, point estimates’ properties, and predictive performance. LogTLM produced the worst predictions for fPARi, whereas both LSE and MLE with normal distribution yielded unrealistic predictions (i.e. fPARi < 0 or > 1) and the greatest coefficients for k. Models with beta-distributed fPARi (either MLE or Bayesian) were recommended to obtain point estimates. Conclusion Each estimation technique has underlying assumptions which may yield different estimates of k and change inference, like the magnitude and rankings among genotypes. Thus, for reproducibility, researchers must fully report the statistical model, assumptions, and estimation technique. LogTLMs are most frequently implemented, but should be avoided to estimate k. Modeling fPARi with a beta distribution was an absent practice in the literature but is recommended, applying either MLE or BE. This workflow and technique comparison can be applied to other plant canopy models, such as the vertical distribution of nitrogen, carbohydrates, photosynthesis, etc. Users should select the method balancing benefits and tradeoffs matching the purpose of the study.

Funder

Kansas Corn Comission

ANPCyT

Instituto Nacional de Tecnología Agropecuaria

Kansas State University Research and Extension

Kansas Agricultural Experiment Station

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3