Rapid and cost-effective molecular karyotyping in wheat, barley, and their cross-progeny by chromosome-specific multiplex PCR

Author:

Ali Mohammad,Polgári Dávid,Sepsi Adél,Kontra Levente,Dalmadi Ágnes,Havelda Zoltán,Sági László,Kis András

Abstract

Abstract Background Interspecific hybridisation is a powerful tool for increasing genetic diversity in plant breeding programmes. Hexaploid wheat (Triticum aestivum, 2n = 42) × barley (Hordeum vulgare, 2n = 14) intergeneric hybrids can contribute to the transfer of agronomically useful traits by creating chromosome addition or translocation lines as well as full hybrids. Information on the karyotype of hybrid progenies possessing various combinations of wheat and barley chromosomes is thus essential for the subsequent breeding steps. Since the standard technique of chromosome in situ hybridisation is labour-intensive and requires specific skills. a routine, cost-efficient, and technically less demanding approach is beneficial both for research and breeding. Results We developed a Multiplex Polymerase Chain Reaction (MPCR) method to identify individual wheat and barley chromosomes. Chromosome-specific primer pairs were designed based on the whole genome sequences of ‘Chinese Spring’ wheat and ‘Golden Promise’ barley as reference cultivars. A pool of potential primers was generated by applying a 20-nucleotide sliding window with consecutive one-nucleotide shifts on the reference genomes. After filtering for optimal primer properties and defined amplicon sizes to produce an ordered ladder-like pattern, the primer pool was manually curated and sorted into four MPCR primer sets for the wheat A, B, and D sub-genomes, and for the barley genome. The designed MPCR primer sets showed high chromosome specificity in silico for the genome sequences of all 18 wheat and barley cultivars tested. The MPCR primers proved experimentally also chromosome-specific for the reference cultivars as well as for 13 additional wheat and four barley genotypes. Analyses of 16 wheat × barley F1 hybrid plants demonstrated that the MPCR primer sets enable the fast and one-step detection of all wheat and barley chromosomes. Finally, the established genotyping system was fully corroborated with the standard genomic in situ hybridisation (GISH) technique. Conclusions Wheat and barley chromosome-specific MPCR offers a fast, labour-friendly, and versatile alternative to molecular cytogenetic detection of individual chromosomes. This method is also suitable for the high-throughput analysis of distinct (sub)genomes, and, in contrast to GISH, can be performed with any tissue type. The designed primer sets proved to be highly chromosome-specific over a wide range of wheat and barley genotypes as well as in wheat × barley hybrids. The described primer design strategy can be extended to many species with precise genome sequence information.

Funder

HUN-REN Centre for Agricultural Research

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3