A deep learning model for rapid classification of tea coal disease

Author:

Xu Yang,Mao Yilin,Li He,Sun Litao,Wang Shuangshuang,Li Xiaojiang,Shen Jiazhi,Yin Xinyue,Fan Kai,Ding Zhaotang,Wang Yu

Abstract

Abstract Background The common tea tree disease known as “tea coal disease” (Neocapnodium theae Hara) can have a negative impact on tea yield and quality. The majority of conventional approaches for identifying tea coal disease rely on observation with the human naked eye, which is labor- and time-intensive and frequently influenced by subjective factors. The present study developed a deep learning model based on RGB and hyperspectral images for tea coal disease rapid classification. Results Both RGB and hyperspectral could be used for classifying tea coal disease. The accuracy of the classification models established by RGB imaging using ResNet18, VGG16, AlexNet, WT-ResNet18, WT-VGG16, and WT-AlexNet was 60%, 58%, 52%, 70%, 64%, and 57%, respectively, and the optimal classification model for RGB was the WT-ResNet18. The accuracy of the classification models established by hyperspectral imaging using UVE-LSTM, CARS-LSTM, NONE-LSTM, UVE-SVM, CARS-SVM, and NONE-SVM was 80%, 95%, 90%, 61%, 77%, and 65%, respectively, and the optimal classification model for hyperspectral was the CARS-LSTM, which was superior to the model based on RGB imaging. Conclusions This study revealed the classification potential of tea coal disease based on RGB and hyperspectral imaging, which can provide an accurate, non-destructive, and efficient classification method for monitoring tea coal disease.

Funder

Special Foundation for Distinguished Taishan Scholar of Shandong Province

Livelihood Project of Qingdao City

Special Talent Program of SAAS

Agricultural Improved Variety Project of Shandong Province

Technology System of Modern Agricultural Industry in Shandong Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3