Non-destructive wood identification using X-ray µCT scanning: which resolution do we need?

Author:

Dierickx Sofie,Genbrugge Siska,Beeckman Hans,Hubau Wannes,Kibleur Pierre,Van den Bulcke Jan

Abstract

Abstract Background Taxonomic identification of wood specimens provides vital information for a wide variety of academic (e.g. paleoecology, cultural heritage studies) and commercial (e.g. wood trade) purposes. It is generally accomplished through the observation of key anatomical features. Classic methodologies mostly require destructive sub-sampling, which is not always acceptable. X-ray computed micro-tomography (µCT) is a promising non-destructive alternative since it allows a detailed non-invasive visualization of the internal wood structure. There is, however, no standardized approach that determines the required resolution for proper wood identification using X-ray µCT. Here we compared X-ray µCT scans of 17 African wood species at four resolutions (1 µm, 3 µm, 8 µm and 15 µm). The species were selected from the Xylarium of the Royal Museum for Central Africa, Belgium, and represent a wide variety of wood-anatomical features. Results For each resolution, we determined which standardized anatomical features can be distinguished or measured, using the anatomical descriptions and microscopic photographs on the Inside Wood Online Database as a reference. We show that small-scale features (e.g. pits and fibres) can be best distinguished at high resolution (especially 1 µm voxel size). In contrast, large-scale features (e.g. vessel porosity or arrangement) can be best observed at low resolution due to a larger field of view. Intermediate resolutions are optimal (especially 3 µm voxel size), allowing recognition of most small- and large-scale features. While the potential for wood identification is thus highest at 3 µm, the scans at 1 µm and 8 µm were successful in more than half of the studied cases, and even the 15 µm resolution showed a high potential for 40% of the samples. Conclusions The results show the potential of X-ray µCT for non-destructive wood identification. Each of the four studied resolutions proved to contain information on the anatomical features and has the potential to lead to an identification. The dataset of 17 scanned species is made available online and serves as the first step towards a reference database of scanned wood species, facilitating and encouraging more systematic use of X-ray µCT for the identification of wood species.

Funder

Belgian Federal Science Policy Office

Bijzonder Onderzoeksfonds UGent

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3