Plant cell wall hydrolysis process reveals structure–activity relationships

Author:

Zhang YananORCID,Xu Shengnan,Ji Fan,Hu Yubing,Gu Zhongwei,Xu Bingqian

Abstract

Abstract Background Recent interest in Populus as a source of renewable energy, combined with its numerous available pretreatment methods, has enabled further research on structural modification and hydrolysis. To improve the biodegradation efficiency of biomass, a better understanding of the relationship between its macroscopic structures and enzymatic process is important. Results This study investigated mutant cell wall structures compared with wild type on a molecular level. Furthermore, a novel insight into the structural dynamics occurring on mutant biomass was assessed in situ and in real time by functional Atomic Force Microscopy (AFM) imaging. High-resolution AFM images confirmed that genetic pretreatment effectively inhibited the production of irregular lignin. The average roughness values of the wild type are 78, 60, and 30 nm which are much higher than that of the mutant cell wall, approximately 10 nm. It is shown that the action of endoglucanases would expose pure crystalline cellulose with more cracks for easier hydrolysis by cellobiohydrolase I (CBHI). Throughout the entire CBHI hydrolytic process, when the average roughness exceeded 3 nm, the hydrolysis mode consisted of a peeling action. Conclusion Functional AFM imaging is helpful for biomass structural characterization. In addition, the visualization of the enzymatic hydrolysis process will be useful to explore the cell wall structure–activity relationships.

Funder

Natural Science Foundation of Jiangsu Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3