An electrophoretic mobility shift assay using the protein isolated from host plants

Author:

He Zihang,Wang Zhibo,Lu Zhangguo,Gao Caiqiu,Wang Yucheng

Abstract

Abstract Background The electrophoretic mobility shift assay (EMSA) is a common technology to detect DNA-protein interactions. However, in most cases, the protein used in EMSA is obtained via prokaryotic expression, and rarely from plants. At the same time, the proteins expressed from prokaryotic systems usually cannot fold naturally and have no post translationally modification, which may affect the binding of proteins to DNA. Results Here, we develop a technique to quickly isolate proteins of interest from host plants and then analyze them using fluorescent EMSA. This technology system is called: protein from plants fluorescent EMSA method (PPF-EMSA). In PPF-EMSA, a special transient transformation method is employed to transiently deliver genes into the plant, enabling efficient synthesis the encoded proteins. Then, the target protein is isolated using immunoprecipitation, and the DNA probes were labeled with cyanine 3 (Cy3). Both fluorescent EMSA and super-shift fluorescent EMSA can be performed using the proteins from plants. Three kinds of plants, Betula platyphylla, Populus. davidiana×P. bolleana and Arabidopsis thaliana, are used in this study. The proteins isolated from plants are in a natural state, can fold naturally and are posttranslationally modified, enabling true binding to their cognate DNAs. Conclusion As transient transformation can be performed quickly and not depended on whether stable transformation is available or not, we believe this method will have a wide application, enabling isolation of proteins from host plant conveniently.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3