Comparison of new hyperspectral index and machine learning models for prediction of winter wheat leaf water content

Author:

Zhang Juanjuan,Zhang WenORCID,Xiong Shuping,Song Zhaoxiang,Tian Wenzhong,Shi Lei,Ma Xinming

Abstract

Abstract Background The leaf water content estimation model is established by hyperspectral technology, which is crucial and provides technical reference for precision irrigation. Methods In this study, two consecutive years of field experiments (different irrigation times and seven wheat varieties) in 2018–2020 were performed to obtain the canopy spectra reflectance and leaf water content (LWC) data. The characteristic bands related to LWC were extracted from correlation coefficient method (CA) and x-Loading weight method (x-Lw). Five modeling methods, spectral index and four other methods (Partial Least-Squares Regression (PLSR), Random Forest Regression (RFR), Extreme Random Trees (ERT), and K-Nearest Neighbor (KNN)) based characteristic bands, were employed to construct LWC estimation models. Results The results showed that the canopy spectral reflectance increased with the increase of irrigation times, especially in the near-infrared band (750–1350 nm). The prediction accuracy of the newly developed differential spectral index DVI (R1185, R1307) was higher than that of the existing spectral index, with R2 of 0.85 and R2 of 0.78 for the calibration and validation, respectively. Due to a large amount of hyperspectral data, the correlation coefficient method (CA) and x-Loading weight (x-Lw) were used to select the water characteristic bands (100 and 28 characteristic bands, respectively) from the full spectrum. We found that the accuracy of the model based on the characteristic bands was not significantly lower than that of the full spectrum-based models. Among these models, the ERT- x-Lw model performed the best (R2 and RMSE of 0.88 and 1.46; 0.84 and 1.62 for the calibration and validation, respectively). In addition, the accuracy of the LWC estimation model constructed by ERT-x-Lw was higher than that of DVI (R1185, R1307). Conclusion The two models based on ERT-x-Lw and DVI (R1185, R1307) can effectively predict wheat leaf water content. The results provide a technical reference and a basis for crop water monitoring and diagnosis under similar production conditions.

Funder

National key RESEARCH and development programs

Key projects of Science and Technology of Henan Province

Modern Agriculture (wheat) Industrial Technology System Project of Henan Province

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3