Ice accommodation in plant tissues pinpointed by cryo-microscopy in reflected-polarised-light

Author:

Stegner MatthiasORCID,Wagner Johanna,Neuner Gilbert

Abstract

Abstract Background Freezing resistant plant organs are capable to manage ice formation, ice propagation, and ice accommodation down to variable temperature limits without damage. Insights in ice management strategies are essential for the fundamental understanding of plant freezing and frost survival. However, knowledge about ice management is scarce. Ice crystal localisation inside plant tissues is challenging and is mainly based on optical appearance of ice in terms of colour and shape, investigated by microscopic methods. Notwithstanding, there are major uncertainties regarding the reliability and accuracy of ice identification and localisation. Surface light reflections, which can originate from water or resin, even at non-freezing temperatures, can have a similar appearance as ice. We applied the principle of birefringence, which is a property of ice but not of liquid water, in reflected-light microscopy to localise ice crystals in frozen plant tissues in an unambiguous manner. Results In reflected-light microscopy, water was clearly visible, while ice was more difficult to identify. With the presented polarised cryo-microscopic system, water, including surface light reflections, became invisible, whereas ice crystals showed a bright and shiny appearance. Based on this, we were able to detect loci where ice crystals are accommodated in frozen and viable plant tissues. In Buxus sempervirens leaves, large ice needles occupied and expanded the space between the adaxial and abaxial leaf tissues. In Galanthus nivalis leaves, air-filled cavities became filled up with ice. Buds of Picea abies managed ice in a cavity at the bud basis and between bud scales. By observing the shape and attachment point of the ice crystals, it was possible to identify tissue fractions that segregate intracellular water towards the aggregating ice crystals. Conclusion Cryo-microscopy in reflected-polarised-light allowed a robust identification of ice crystals in frozen plant tissue. It distinguishes itself, compared with other methods, by its ease of ice identification, time and cost efficiency and the possibility for high throughput. Profound knowledge about ice management strategies, within the whole range of freezing resistance capacities in the plant kingdom, might be the link to applied science for creating arrangements to avoid future frost damage to crops.

Funder

Austrian Science Fund

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Reference54 articles.

1. Pearce RS. Plant freezing and damage. Ann Bot. 2001;87(4):417–24.

2. Wisniewski ME, Gusta LV, Fuller MP, Karlson D. Ice nucleation, propagation and deep supercooling: the lost tribes of freezing studies. In: Gusta LV, Wisniewski ME, Tanino KK, editors. Plant cold hardiness: from the laboratory to the field. Wallingford: Cabi Publishing C A B Int; 2009. p. 1–11.

3. Kovaleski AP, Londo JP, Finkelstein KD. X-ray phase contrast imaging of Vitis spp. buds shows freezing pattern and correlation between volume and cold hardiness. Sci Rep. 2019;9(1):14949.

4. Larcher W, Meindl U, Ralser E, Ishikawa M. Persistent supercooling and silica deposition in cell-walls of palm leaves. J Plant Physiol. 1991;139(2):146–54.

5. Quamme H. Deep supercooling in buds of woody plants. In: Lee RE, Warren GJ, Gusta LV, editors. Biological ice nucleation and its applications. Saint Paul: Amer Phytopathological Society; 1995. p. 183–200.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3