Author:
Devi Micha Gracianna,Rustia Dan Jeric Arcega,Braat Lize,Swinkels Kas,Espinosa Federico Fornaguera,van Marrewijk Bart M.,Hemming Jochen,Caarls Lotte
Abstract
Abstract
Background
A well-known method for evaluating plant resistance to insects is by measuring insect reproduction or oviposition. Whiteflies are vectors of economically important viral diseases and are, therefore, widely studied. In a common experiment, whiteflies are placed on plants using clip-on-cages, where they can lay hundreds of eggs on susceptible plants in a few days. When quantifying whitefly eggs, most researchers perform manual eye measurements using a stereomicroscope. Compared to other insect eggs, whitefly eggs are many and very tiny, usually 0.2 mm in length and 0.08 mm in width; therefore, this process takes a lot of time and effort with and without prior expert knowledge. Plant insect resistance experiments require multiple replicates from different plant accessions; therefore, an automated and rapid method for quantifying insect eggs can save time and human resources.
Results
In this work, a novel automated tool for fast quantification of whitefly eggs is presented to accelerate the determination of plant insect resistance and susceptibility. Leaf images with whitefly eggs were collected from a commercial microscope and a custom-built imaging system. A deep learning-based object detection model was trained using the collected images. The model was incorporated into an automated whitefly egg quantification algorithm, deployed in a web-based application called Eggsplorer. Upon evaluation on a testing dataset, the algorithm was able to achieve a counting accuracy as high as 0.94, r2 of 0.99, and a counting error of ± 3 eggs relative to the actual number of eggs counted by eye. The automatically collected counting results were used to determine the resistance and susceptibility of several plant accessions and were found to yield significantly comparable results as when using the manually collected counts for analysis.
Conclusion
This is the first work that presents a comprehensive step-by-step method for fast determination of plant insect resistance and susceptibility with the assistance of an automated quantification tool.
Funder
Horizon 2020 Framework Programme
WUR internal program KB34 Towards a Circular and Climate Neutral Society
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献