Plant, space and time - linked together in an integrative and scalable data management system for phenomic approaches in agronomic field trials

Author:

Honecker Andreas,Schumann Henrik,Becirevic Diana,Klingbeil Lasse,Volland Kai,Forberig Steffi,Jansen Marc,Paulsen Hinrich,Kuhlmann Heiner,Léon Jens

Abstract

Abstract Background To ensure further genetic gain, genomic approaches in plant breeding rely on precise phenotypic data, describing plant structure, function and performance. A more precise characterization of the environment will allow a better dealing with genotype-by-environment-by-management interactions. Therefore, space and time dependencies of the crop production processes have to be considered. The use of novel sensor technologies has drastically increased the amount and diversity of phenotypic data from agronomic field trials. Existing data management systems either do not consider space and time, are not customizable to individual needs such as field trial handling, or have restricted availability. Hence, we propose an integrative data management and information system (DMIS) for handling of traditional and novel sensor-based phenotypic, environmental and management data. The DMIS must be customizable, applicable and scalable from individual users to organizations. Results Key element of the system is a dynamic PostgreSQL database with GIS-extension, capable of importing, storing and managing all types of data including images. The database references every structural database object and measurement in a threefold approach with semantic, spatial and temporal reference. Timestamps and geo-coordinates allow automated linking of all data. Traits can be precisely defined individually or uploaded as predefined lists. Filtering and selection routines allow compilation of all data for visualization via tables, charts or maps and for export and external statistical analysis. New possibilities of environmental information-based planning of field trials, weather-guided phenotyping and data analysis for outlier or hot-spot detection are demonstrated. Conclusions The DMIS supports users in handling experimental field trials with crop plants and modern phenotyping methods. It focuses on linking all space and time dependent processes of plant production. Weather, soil and management, as well as growth and yield formation of the plants can be depicted, thus allowing a more precise interpretation of the results in relation to environment and management. Breeders, extension specialists, official testing agencies and agricultural scientists are assisted in all steps of a typical workflow with planning, designing, conducting, controlling and analyzing field trials to generate new information for decision support in the crop improvement process.

Funder

Bundesanstalt für Landwirtschaft und Ernährung

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3