A CNN-LSTM-att hybrid model for classification and evaluation of growth status under drought and heat stress in chinese fir (Cunninghamia lanceolata)

Author:

Xing Dong,Wang Yulin,Sun Penghui,Huang Huahong,Lin Erpei

Abstract

AbstractBackgroundCunninghamia lanceolata(Chinese fir), is one of the most important timber trees in China. With the global warming, to develop new resistant varieties to drought or heat stress has become an essential task for breeders of Chinese fir. However, classification and evaluation of growth status of Chinese fir under drought or heat stress are still labor-intensive and time-consuming.ResultsIn this study, we proposed a CNN-LSTM-att hybrid model for classification of growth status of Chinese fir seedlings under drought and heat stress, respectively. Two RGB image datasets of Chinese fir seedling under drought and heat stress were generated for the first time, and utilized in this study. By comparing four base CNN models with LSTM, the Resnet50-LSTM was identified as the best model in classification of growth status, and LSTM would dramatically improve the classification performance. Moreover, attention mechanism further enhanced performance of Resnet50-LSTM, which was verified by Grad-CAM. By applying the established Resnet50-LSTM-att model, the accuracy rate and recall rate of classification was up to 96.91% and 96.79% for dataset of heat stress, and 96.05% and 95.88% for dataset of drought, respectively. Accordingly, the R2value and RMSE value for evaluation on growth status under heat stress were 0.957 and 0.067, respectively. And, the R2value and RMSE value for evaluation on growth status under drought were 0.944 and 0.076, respectively.ConclusionIn summary, our proposed model provides an important tool for stress phenotyping in Chinese fir, which will be a great help for selection and breeding new resistant varieties in future.

Funder

Key research and development project of Zhejiang Province

Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3