Abstract
Abstract
Background
Flexural three-point bending tests are useful for characterizing the mechanical properties of plant stems. These tests can be performed with minimal sample preparation, thus allowing tests to be performed relatively quickly. The best-practice for such tests involves long spans with supports and load placed at nodes. This approach typically provides only one flexural stiffness measurement per specimen. However, by combining flexural tests with analytic equations, it is possible to solve for the mechanical characteristics of individual stem segments.
Results
A method is presented for using flexural tests to obtain estimates of flexural stiffness of individual segments. This method pairs physical test data with analytic models to obtain a system of equations. The solution of this system of equations provides values of flexural stiffness for individual stalk segments. Uncertainty in the solved values for flexural stiffness were found to be strongly dependent upon measurement errors. Row-wise scaling of the system of equations reduced the influence of measurement error. Of many possible test combinations, the most advantageous set of tests for performing these measurements were identified. Relationships between measurement uncertainty and solution uncertainty were provided for two different testing methods.
Conclusions
The methods presented in this paper can be used to measure the axial variation in flexural stiffness of plant stem segments. However, care must be taken to account for the influence of measurement error as the individual segment method amplifies measurement error. An alternative method involving aggregate flexural stiffness values does not amplify measurement error, but provides lower spatial resolution.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference23 articles.
1. Niklas KJ, Moon FC. Flexural stiffness and modulus of elasticity of flower stalks from allium stalks from Allium sativum as measured by multiple resonance frequency spectra. Am J Bot. 1988;75(10):1517–25.
2. Tongdi Q, Yaoming L, Jin C. Experimental study on flexural mechanical properties of corn stalks. In: 2011 IEEE international conference on new technology of agricultural engineering; 2011.
3. Robertson DJ, Lee SY, Julias M, Cook DD. Maize stalk lodging: flexural stiffness predicts strength. Crop Sci. 2016;56(4):1711–8.
4. Al-Zube LA, Robertson DJ, Edwards JN, Sun W, Cook DD. Measuring the compressive modulus of elasticity of pith-filled plant stems. Plant Methods. 2017;13(1):1-9.
5. Al-Zube L, Sun W, Robertson D, Cook D. The elastic modulus for maize stems. Plant Methods. 2018;8(14):11.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献