Abstract
Abstract
Background
Specific detection of the type and severity of plant abiotic stresses helps prevent yield loss by considering timely actions. This study introduces a novel method to detect the type and severity of stress in cucumber plants under salinity and drought conditions. Various features, i.e., morphological (image textural features), physiological/biochemical (relative water content, chlorophyll, catalase activity, anthocyanins, phenol content, and proline), as well as miRNA characteristics (the concentration of miRNA-156a, miRNA-166i, miRNA-399g, and miRNA-477b) were extracted from plant leaves, and machine learning methods were used to predict the type and severity of stress by having these features. Support vector machine (SVM) with parameters optimized by genetic algorithm (GA) and particle swarm optimization (PSO) was used for machine learning.
Results
The coefficient of determination of predicting the stress type and severity in plants under both stresses was 0.61, 0.82, and 0.99 using morphological, physiological/biochemical, and miRNA characteristics, respectively. This reveals machine learning methods optimized by metaheuristic optimization techniques can provide specific detection of salt and drought stresses in cucumber plants based on miRNA characteristics. Among the study miRNAs, miRNA-477b and miRNA-399g had the highest and lowest contribution to salt and drought stresses, respectively.
Conclusions
Comapred to conventional plant traits, miRNAs are more reliable features for providing us with valuable information about plant abiotic diseases at early stages. Using an electrochemical miRNA biosensor similar to one used in this work to measure the miRNA concentration in plant leaves and using a machine learning algorithm such as SVM enable farmers to detect the salt and drought stress at early stages in cucumber plants with very high accuracy.
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献