Machine learning provides specific detection of salt and drought stresses in cucumber based on miRNA characteristics

Author:

Mohammadi ParvinORCID,Asefpour Vakilian KeyvanORCID

Abstract

Abstract Background Specific detection of the type and severity of plant abiotic stresses helps prevent yield loss by considering timely actions. This study introduces a novel method to detect the type and severity of stress in cucumber plants under salinity and drought conditions. Various features, i.e., morphological (image textural features), physiological/biochemical (relative water content, chlorophyll, catalase activity, anthocyanins, phenol content, and proline), as well as miRNA characteristics (the concentration of miRNA-156a, miRNA-166i, miRNA-399g, and miRNA-477b) were extracted from plant leaves, and machine learning methods were used to predict the type and severity of stress by having these features. Support vector machine (SVM) with parameters optimized by genetic algorithm (GA) and particle swarm optimization (PSO) was used for machine learning. Results The coefficient of determination of predicting the stress type and severity in plants under both stresses was 0.61, 0.82, and 0.99 using morphological, physiological/biochemical, and miRNA characteristics, respectively. This reveals machine learning methods optimized by metaheuristic optimization techniques can provide specific detection of salt and drought stresses in cucumber plants based on miRNA characteristics. Among the study miRNAs, miRNA-477b and miRNA-399g had the highest and lowest contribution to salt and drought stresses, respectively. Conclusions Comapred to conventional plant traits, miRNAs are more reliable features for providing us with valuable information about plant abiotic diseases at early stages. Using an electrochemical miRNA biosensor similar to one used in this work to measure the miRNA concentration in plant leaves and using a machine learning algorithm such as SVM enable farmers to detect the salt and drought stress at early stages in cucumber plants with very high accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3