A novel in-situ-process technique constructs whole circular cpDNA library

Author:

Zhou Qiang,Ding Xianlong,Wang Hongjie,Farooq Zunaira,Wang Liang,Yang Shouping

Abstract

Abstract Background The chloroplast genome (cp genome) is directly related to the study and analysis of molecular phylogeny and evolution of plants in the phylogenomics era. The cp genome, whereas, is highly plastic and exists as a heterogeneous mixture of sizes and physical conformations. It is advantageous to purify/enrich the circular chloroplast DNA (cpDNA) to reduce sequence complexity in cp genome research. Large-insert, ordered DNA libraries are more practical for genomics research than conventional, unordered ones. From this, a technique of constructing the ordered BAC library with the goal-insert cpDNA fragment is developed in this paper. Results This novel in-situ-process technique will efficiently extract circular cpDNA from crops and construct a high-quality cpDNA library. The protocol combines the in-situ chloroplast lysis for the high-purity circular cpDNA with the in-situ substitute/ligation for the high-quality cpDNA library. Individually, a series of original buffers/solutions and optimized procedures for chloroplast lysis in-situ is different than bacterial lysis in-situ; the in-situ substitute/ligation that reacts on the MCE membrane is suitable for constructing the goal-insert, ordered cpDNA library while preventing the large-insert cpDNA fragment breakage. The goal-insert, ordered cpDNA library is arrayed on the microtiter plate by three colonies with the definite cpDNA fragment that are homologous-corresponds to the whole circular cpDNA of the chloroplast. Conclusion The novel in-situ-process technique amply furtherance of research in genome-wide functional analysis and characterization of chloroplasts, such as genome sequencing, bioinformatics analysis, cloning, physical mapping, molecular phylogeny and evolution.

Funder

National Key R&D Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3