Detecting the colonization of ericoid mycorrhizal fungi in Vaccinium uliginosum using in situ polymerase chain reaction and green fluorescent protein

Author:

Yang Hongyi,Zhao Xingyu,Li LiliORCID,Zhang Jie

Abstract

Abstract Background Ericoid mycorrhizal fungi (EMF) play important roles in mineral cycling and plant nutrient acquisition, and they increase plant survival in nutrient-poor environments. In this study, we detected the colonization of EMF using a green fluorescent protein (GFP) expression method and in situ PCR. Results Genetic transformants of Cryptosporiopsis ericae and Sordariomycetes sp. expressing GFP were obtained via Agrobacterium tumefaciens-mediated transformation. GFP transformants were able to infect Vaccinium uliginosum, and their fluorescence was visible in the hair roots. Both in situ PCR and the GFP-expressing method indicated that EMF could colonize the hair roots of V. uliginosum 2 weeks after inoculation. Conclusions This research represents the first attempt to detect ericoid mycorrhizal colonization using in situ PCR. A GFP-expressing method is an excellent system for detecting the colonization of EMF, but it is dependent on the successful transformation and expression of the gfp gene. In situ PCR and the GFP expression may be developed as new tools to study the interactions of EMF both with ericaceous plants and with the environment.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Plant Science,Genetics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3