Author:
Wright Harry Charles,Lawrence Frederick Antonio,Ryan Anthony John,Cameron Duncan Drummond
Abstract
Abstract
Background
Object detection, size determination, and colour detection of images are tools commonly used in plant science. Key examples of this include identification of ripening stages of fruit such as tomatoes and the determination of chlorophyll content as an indicator of plant health. While methods exist for determining these important phenotypes, they often require proprietary software or require coding knowledge to adapt existing code.
Results
We provide a set of free and open-source Python scripts that, without any adaptation, are able to perform background correction and colour correction on images using a ColourChecker chart. Further scripts identify objects, use an object of known size to calibrate for size, and extract the average colour of objects in RGB, Lab, and YUV colour spaces. We use two examples to demonstrate the use of these scripts. We show the consistency of these scripts by imaging in four different lighting conditions, and then we use two examples to show how the scripts can be used. In the first example, we estimate the lycopene content in tomatoes (Solanum lycopersicum) var. Tiny Tim using fruit images and an exponential model to predict lycopene content. We demonstrate that three different cameras (a DSLR camera and two separate mobile phones) are all able to model lycopene content. The models that predict lycopene or chlorophyll need to be adjusted depending on the camera used. In the second example, we estimate the chlorophyll content of basil (Ocimum basilicum) using leaf images and an exponential model to predict chlorophyll content.
Conclusion
A fast, cheap, non-destructive, and inexpensive method is provided for the determination of the size and colour of plant materials using a rig consisting of a lightbox, camera, and colour checker card and using free and open-source scripts that run in Python 3.8. This method accurately predicted the lycopene content in tomato fruit and the chlorophyll content in basil leaves.
Funder
Biotechnology and Biological Sciences Research Council
Publisher
Springer Science and Business Media LLC
Subject
Plant Science,Genetics,Biotechnology
Reference24 articles.
1. Ji W, et al. A digital imaging method for measuring banana ripeness. Color Res Appl. 2013;38:364–74.
2. Mhaski RR, Chopade PB, Dale MP. Determination of ripeness and grading of tomato using image analysis on Raspberry Pi. In: Mhaski RR, editor. 2015 communication, control and intelligent systems (CCIS). Mathura: IEEE; 2015.
3. Cox KA, Mcghie TK, White A, Woolf A. B skin colour and pigment changes during ripening of ‘ Hass ’ avocado fruit. Postharvest Biol Technol. 2004;31:287–94.
4. Francis FJ. Quality as influenced by color. Food Qual Prefer. 1995;6:149–55.
5. Wang Y, Wang D, Shi P, Omasa K. Estimating rice chlorophyll content and leaf nitrogen concentration with a digital still color camera under natural light. Plant Methods. 2014;10:36.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献