PlantNh-Kcr: a deep learning model for predicting non-histone crotonylation sites in plants

Author:

Jiang Yanming,Yan Renxiang,Wang Xiaofeng

Abstract

Abstract Background Lysine crotonylation (Kcr) is a crucial protein post-translational modification found in histone and non-histone proteins. It plays a pivotal role in regulating diverse biological processes in both animals and plants, including gene transcription and replication, cell metabolism and differentiation, as well as photosynthesis. Despite the significance of Kcr, detection of Kcr sites through biological experiments is often time-consuming, expensive, and only a fraction of crotonylated peptides can be identified. This reality highlights the need for efficient and rapid prediction of Kcr sites through computational methods. Currently, several machine learning models exist for predicting Kcr sites in humans, yet models tailored for plants are rare. Furthermore, no downloadable Kcr site predictors or datasets have been developed specifically for plants. To address this gap, it is imperative to integrate existing Kcr sites detected in plant experiments and establish a dedicated computational model for plants. Results Most plant Kcr sites are located on non-histones. In this study, we collected non-histone Kcr sites from five plants, including wheat, tabacum, rice, peanut, and papaya. We then conducted a comprehensive analysis of the amino acid distribution surrounding these sites. To develop a predictive model for plant non-histone Kcr sites, we combined a convolutional neural network (CNN), a bidirectional long short-term memory network (BiLSTM), and attention mechanism to build a deep learning model called PlantNh-Kcr. On both five-fold cross-validation and independent tests, PlantNh-Kcr outperformed multiple conventional machine learning models and other deep learning models. Furthermore, we conducted an analysis of species-specific effect on the PlantNh-Kcr model and found that a general model trained using data from multiple species outperforms species-specific models. Conclusion PlantNh-Kcr represents a valuable tool for predicting plant non-histone Kcr sites. We expect that this model will aid in addressing key challenges and tasks in the study of plant crotonylation sites.

Funder

the Start-up fund of Shanxi Normal University

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3