1. Dale LM, Thewis A, Boudry C, Rotar I, Dardenne P, Baeten V, Pierna JAF. Hyperspectral imaging applications in agriculture and agro-food product quality and safety control: a review. Appl Spectrosc Rev. 2013;48(2):142–59.
2. Jones HG, Grant OM. Remote sensing and other imaging technologies to monitor grapevine performance. In: Gerós H, Chaves MM, Gil HM, Delrot S, editors. Grapevine in a changing environment: a molecular and ecophysiological perspective. West Sussex: Wiley; 2015. p. 179–201.
3. Villmann T, Kästner M, Backhaus A, Seiffert U. Processing hyperspectral data in machine learning. In: European symposium on artificial neural networks, computational intelligence and machine learning, 2013, p. 1–10.
4. Kuska M, Wahabzada M, Leucker M, Dehne H-W, Kersting K, Oerke E-C, Steiner U, Mahlein A-K. Hyperspectral phenotyping on the microscopic scale: towards automated characterization of plant–pathogen interactions. Plant Methods. 2015;11(28):1–14.
5. Arens N, Backhaus A, Döll S, Fischer S, Seiffert U, Mock H-P. Non-invasive presymptomatic detection of Cercospora beticola infection and identification of early metabolic responses in sugar beet. Front Plant Sci. 2016;7:1377.