Field cabbage detection and positioning system based on improved YOLOv8n

Author:

Jiang Ping,Qi Aolin,Zhong Jiao,Luo Yahui,Hu Wenwu,Shi Yixin,Liu Tianyu

Abstract

Abstract Background Pesticide efficacy directly affects crop yield and quality, making targeted spraying a more environmentally friendly and effective method of pesticide application. Common targeted cabbage spraying methods often involve object detection networks. However, complex natural and lighting conditions pose challenges in the accurate detection and positioning of cabbage. Results In this study, a cabbage detection algorithm based on the YOLOv8n neural network (YOLOv8-cabbage) combined with a positioning system constructed using a Realsense depth camera is proposed. Initially, four of the currently available high-performance object detection models were compared, and YOLOv8n was selected as the transfer learning model for field cabbage detection. Data augmentation and expansion methods were applied to extensively train the model, a large kernel convolution method was proposed to improve the bottleneck section, the Swin transformer module was combined with the convolutional neural network (CNN) to expand the perceptual field of feature extraction and improve edge detection effectiveness, and a nonlocal attention mechanism was added to enhance feature extraction. Ablation experiments were conducted on the same dataset under the same experimental conditions, and the improved model increased the mean average precision (mAP) from 88.8% to 93.9%. Subsequently, depth maps and colour maps were aligned pixelwise to obtain the three-dimensional coordinates of the cabbages via coordinate system conversion. The positioning error of the three-dimensional coordinate cabbage identification and positioning system was (11.2 mm, 10.225 mm, 25.3 mm), which meets the usage requirements. Conclusions We have achieved accurate cabbage positioning. The object detection system proposed here can detect cabbage in real time in complex field environments, providing technical support for targeted spraying applications and positioning.

Funder

Hunan Province Key Areas Research and Development Plan Project

Science Research Project of Hunan Provincial Department of Education

Research Project of Hunan Agricultural University Degree and Postgraduate Teaching Reform

Teaching Reform Research Project of Hunan Agricultural University

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3